个人信息Personal Information
教授 博士生导师 硕士生导师
性别:女
毕业院校:山东大学
学历:博士研究生毕业
学位:理学博士学位
在职信息:在职
所在单位:数学学院
入职时间:1986-07-01
学科:应用数学
办公地点:知新楼B座
联系方式:邮箱:wqjxyf@sdu.edu.cn
Fast finite difference approximation for identifying parameters in a two-dimensional space-fractional nonlocal model with variable diffusivity coefficients
点击次数:
所属单位:数学学院
发表刊物:SIAM Journal On Numerical Analysis
关键字:space-fractional nonlocal model; variable coefficients; implicit difference method; FBi-CGSTAB; parameter identification; L-M regularization method
摘要:In this paper, we consider an inverse problem for identifying the fractional derivative indices in a two-dimensional space-fractional nonlocal model based on a generalization of the two-sided Riemann-Liouville formulation with variable diffusivity coefficients. First, we derive an implicit difference method (IDM) for the direct problem and the stability and convergence of the IDM are discussed. Second, for the implementation of the IDM, we develop a fast bi-conjugate gradient stabilized method (FBi-CGSTAB) that is superior in computational performance to Gaussian elimination and attains the same accuracy. Third, we utilize the Levenberg-Marquardt (L-M) regularization technique combined with the Armijo rule (the popular inexact line search condition) to solve the modified nonlinear least squares model associated with the parameter identification. Finally, we carry out numerical tests to verify the accuracy and efficiency of the IDM. Numerical investigations are performed with both accurate data and noisy data to check the effectiveness of the L-M regularization method. The convergence behavior of the L-M for the inverse problem involving the space-fractional diffusion model is shown graphically.
论文类型:基础研究
通讯作者:陈善镇,刘发旺,蒋晓芸,Ian Turner,Kevin Burrage
论文编号:A99603A6651B4428967EE0C34D6F2FA0
学科门类:理学
一级学科:数学
卷号:54
期号:2
页面范围:606-624
是否译文:否
发表时间:2016-10-01
收录刊物:SCI