个人信息Personal Information
教授 博士生导师 硕士生导师
性别:女
毕业院校:山东大学
学历:博士研究生毕业
学位:理学博士学位
在职信息:在职
所在单位:数学学院
入职时间:1986-07-01
学科:应用数学
办公地点:知新楼B座
联系方式:邮箱:wqjxyf@sdu.edu.cn
Unconditionally convergent numerical method for the two-dimensional nonlinear time fractional diffusion-wave equation
点击次数:
所属单位:数学学院
发表刊物:Applied Numerical Mathematics
关键字:Two-dimensional nonlinear time fractional diffusion-wave equation; Optimal error estimate; Crank-Nicolson method; Legendre spectral method
摘要:In this paper, we develop a Crank-Nicolson Legendre spectral method for solving the two-dimensional nonlinear time fractional diffusion-wave equation in bounded rectangular domains. In terms of the error splitting argument technique, an optimal error estimate of the numerical scheme is obtained without any time-step size conditions, while the usual analysis for high dimensional nonlinear fractional problems always required certain time-step restrictions dependent on the spatial mesh size. Some numerical results are given to justify the theoretical analysis. (C) 2019 IMACS. Published by Elsevier B.V. All rights reserved.
全部作者:张慧,蒋晓芸
第一作者:张慧
论文类型:基础研究
论文编号:9CB0BCB610AE422C9B0DB1051E8AFB95
学科门类:理学
一级学科:数学
卷号:146
页面范围:1-12
是否译文:否
发表时间:2019-12-01
收录刊物:SCI
上一条:An optimal error estimate for the two-dimensional nonlinear time fractional advection-diffusion equation with smooth and non-smooth solutions
下一条:Fast finite difference approximation for identifying parameters in a two-dimensional space-fractional nonlocal model with variable diffusivity coefficients