![]() |
个人信息Personal Information
教授 博士生导师 硕士生导师
性别:男
毕业院校:中国科学院化学研究所
学历:博士研究生毕业
学位:理学博士学位
在职信息:在职
所在单位:化学与化工学院
入职时间:2019-10-31
电子邮箱:ligx8022@163.com
扫描关注
- [1] 申涵. The Self-Expanding Frame of Graphydiyne Induces Rapid Transport of Lithium Ions in All-Solid-State Lithium Metal Batteries. Advanced Functional Materials, 2024.
- [2] 马少博. Modulating the Inner Helmholtz Plane towards Stable Solid Electrolyte Interphase by Anion-π Interactions for High-Performance Anode-Free Lithium Metal Batteries. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024.
- [3] 赵景腾. Electrolyte-Tailored Heterostructured Zinc Metal Anodes with Tunable Electric Double Layer for Fast-Cycling Aqueous Zinc Batteries. Advanced Functional Materials, 2024.
- [4] 宋聪颖. Breaking interfacial Lithium-Ion conduction barriers by a Small-Molecule blocker of interfacial reactions for All-Solid-State Lithium-Sulfur batteries. Chemical Engineering Journal, 511, 2025.
- [5] 孔洋. Synthesis and Sodium-Ion Storage of Triazole-Substituted Graphdiyne. Journal of the American Chemical Society, 14219, 2025.
- [6] 李芳. Molecule/Ion Anchoring Interphase Achieving 4.8 V Fast-Cycling Lithium Metal Batteries. ACS ENERGY LETTERS, 779-787, 2025.
- [7] 肖煌. Recent advances in fast-charging lithium-ion batteries: Mechanism, materials, and future opportunities. Chemical Engineering Journal, 506, 2025.
- [8] Gao, Qixin. An Ion-Pumping Quasi-Solid Electrolyte Enabled by Electrokinetic Effects for Stable Aqueous Zinc Metal Batteries. small, 2024.
- [9] Cheng, Xin. Application of Spectroscopic Techniques in the Development of Fast-Charging Lithium-Ion Batteries. J. Phys. Chem. C, 128, 18678-18694, 2024.
- [10] 孔洋. Sulfonic Acid-Functionalized Graphdiyne for Effective Li-S Battery Separators. Journal of the American Chemical Society, 146, 23764-23774, 2024.
- [11] 王中强. RuOx Quantum Dots Loaded on Graphdiyne for High-Performance Lithium-Sulfur Batteries. ADVANCED MATERIALS, 2023.
- [12] 申涵. Lithiated Graphdiyne Quantum Dots for Stable Lithium Metal Anodes. CCS Chemistry, 2023.
- [13] 马少博. Breaking Mass Transport Limitations by Iodized Polyacrylonitrile Anodes for Extremely Fast-Charging Lithium-Ion Batteries. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 62, 2023.
- [14] 赵景腾. Antifreezing polymeric-acid electrolyte for high-performance aqueous zinc-ion batteries. 能源存储材料, 61, 2023.
- [15] Wang, Yijie. Synthesis of Crystalline Phosphine-Graphdiyne with Self-Adaptive p?π Conjugation. Journal of the American Chemical Society, 145, 864-872, 2023.
- [16] 汪帆. Gradient Graphdiyne Induced Copper and Oxygen Vacancies in Cu<sub>0.95</sub>V<sub>2</sub>O<sub>5</sub> Anodes for Fast-Charging Lithium-Ion Batteries. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022.
- [17] 赵景腾. Fast-Charging Strategies for Lithium-Ion Batteries: Advances and Perspectives. CHEMPLUSCHEM, 87, e202200155, 2022.
- [18] 李芳. Recent Achievements on the Liquid Electrolytes for Fast-Charging Lithium Metal Batteries. Energy Technology, 2023.
- [19] 宋聪颖. Ordered Lithium-Ion Conductive Interphase with Gradient Desolvation Effects for Fast-Charging Lithium Metal Batteries. ACS ENERGY LETTERS, 8, 3404-3411, 2023.
- [20] Zhang, Baohong. Breaking the structural anisotropy of ZnO enables dendrite-free lithium-metal anode with ultra-long cycling lifespan. Cell Reports Physical Science, 3, 2022.