李象贤
访问次数:
论文成果
Cross-modal Learning Using Privileged Information for Long-tailed Image Classification
  • 发表刊物:
    Computational Visual Media
  • 关键字:
    long-tailed classification, cross-modal learning, representation learning, privileged information
  • 摘要:
    The prevalence of long-tailed distributions in real-world data often results in classification models favoring the dominant classes, neglecting the less frequent ones. Current approaches address the issues in long-tailed image classification by rebalancing data, optimizing weights, and augmenting information. However, these methods often struggle to balance the performance between dominant and minority classes because of inadequate representation learning of the latter. To address these problems, we introduce descriptional words into images as cross-modal privileged information and propose a cross-modal enhanced method for long-tailed image classification, referred to as CMLTNet. CMLTNet improves the learning of intraclass similarity of tail-class representations by cross-modal alignment and captures the difference between the head and tail classes in semantic space by cross-modal inference. After fusing the above information, CMLTNet achieved an overall performance that was better than those of benchmark long-tailed and cross-modal learning methods on the long-tailed cross-modal datasets, NUS-WIDE and VireoFood-172. The effectiveness of the proposed modules was further studied through ablation experiments. In a case study of feature distribution, the proposed model was better in learning representations of tail classes, and in the experiments on model attention, CMLTNet has the potential to help learn some rare concepts in the tail class through mapping to the semantic space.
  • 备注:
    SCI 一区,CCF C,IF=17.3
  • 全部作者:
    Yuze Zheng,Haokai Ma,Zhuang Qi,Xiangxu Meng
  • 第一作者:
    Xiangxian Li
  • 论文类型:
    期刊论文
  • 通讯作者:
    Lei Meng
  • 卷号:
    10
  • 页面范围:
    981-992
  • 是否译文:
  • 发表时间:
    2024-06-01
  • 收录刊物:
    SCI、EI
版权所有   ©山东大学 地址:中国山东省济南市山大南路27号 邮编:250100 
查号台:(86)-0531-88395114
值班电话:(86)-0531-88364731 建设维护:山东大学信息化工作办公室