电子邮箱: ypshi@sdu.edu.cn
时彦朋,副教授,教学科研岗,硕士生导师;主要从事太赫兹材料与器件,太赫兹传感技术与超材料研究,微流控技术研究,光电探测技术研究,第一/通讯作者发表SCI/EI收录论文二十余篇,目前主持国家自然科学基金、山东省自然科学基金、山东省博后创新专项基金、博士后面上基金等科研项目。
2019年开始招收培养硕士研究生,所指导2019级硕士研究生获得2020年硕士生国家奖学金,山东大学校长奖学金,研究生学生标兵等荣誉称号;所指导2020级硕士研究生获得2021年硕士生国家奖学金,山东大学校长奖学金。目前课题组硕士研究生5名,本科生十余名。2020年指导本科生发表学院第一篇本科生为第一作者的SCI论文;2021年指导4名本科生分别以第一作者身份发表SCI论文;2022年指导2名、2023年指导3名本科生分别以第一作者身份发表SCI论文。以上本科生均获得免试攻读研究生资格。
国家自然科学基金委员会  ,计划局 ,无 ,借调工程师
山东大学  ,副教授
山东大学  ,博士后
类别 | 专业 | 简介 | 人数 | 年份 |
---|---|---|---|---|
硕士生招生 |
微电子与固体电子学(学术硕士),电子信息(专业学位) |
招收学术硕士、专业硕士;欢迎微电子、物理、信息、材料等方向的同学报考!也欢迎学院本科生加入科研团队。 |
2025 |
本科生课程名称 | 学期 | 学分 | 课程号 |
---|---|---|---|
半导体材料 |
春学期 |
2.0 |
sd04030150 |
生物微电子导论 |
春学期 |
2.0 |
sd04031350 |
生物微电子导论 |
春学期 |
2.0 |
sd0401009V |
量子力学 |
春学期 |
3.0 |
sd04030300 |
专业实习 |
秋学期 |
1.0 |
sd04030250 |
半导体表面与界面物理 |
春学期 |
0230006 |
名称 | 简介 |
---|---|
多源智能感知 |
主要包括:(1)太赫兹材料与器件;(2)太赫兹传感技术;(3)生物医学相关检测。 |
项目名称 | 项目周期 |
---|---|
基于柔性薄膜的6G太赫兹芯片与三维电路集成的研究(子课题1) |
2024/01/01,2026/12/30 |
山东省自主可控服务器CPU发展战略研究 |
2024/01/26,2024/12/31 |
高灵敏度可调控太赫兹传感器的研究 |
2019/04/26,2022/06/30 |
III-V 族半导体三维异质纳米线的原位构筑与红外探测应用 |
2017/07/01,2021/06/30 |
“猪脸识别”智能监控系统技术开发研究 |
2019/04/27,2021/05/26 |
基于微腔结构的可调控太赫兹生化传感器的研究 |
2018/08/16,2021/12/31 |
【1】陈凯.Chalcogenide phase-change material advances programmable terahertz metamaterials: a non-volatile perspective for reconfigurable intelligent surfacesNANOPHOTONICS,2024.
【2】.Graphene-Tuned, Tightly Coupled Hybrid Plasmonic Meta-Atoms. Nanomaterials , 14,2024.
【3】刘悦扬.Enhanced Optical Transmission through a Hybrid Bull's Eye Structure Integrated with a Silicon Hemisphere. NANOMATERIALS, 13,2023.
【4】房久凯.Thermally Tunable Structural Color Based on Patterned Ultra-Thin Asymmetric Fabry-Perot Cavity with Phase-Change Material. CRYSTALS, 13,2023.
【5】孙渊博.A wide-angle and TE/TM polarization-insensitive terahertz metamaterial near-perfect absorber based on a multi-layer plasmonic structureNanoscale Advances:4072,2021.
【6】刘自正.High-Q metamaterials based on cavity mode resonance for THz sensing applicationsAIP Advances,2020.
【7】刘笑宇.Tunable Terahertz Metamaterials Based on Anapole Excitation with Graphene for Reconfigurable SensorsACS Applied Nano Materials:2129,2020.
【8】孙恺祥.Terahertz Refractive Index Sensor Based on Enhanced Extraordinary Optical TransmissionCrystals,2022.
【9】李美坪.Tunable plasmon-induced transparency in graphene-based plasmonic waveguide for terahertz band-stop filtersJournal of Optics,2022.
【10】.Amorphous-InGaZnO Thin-Film Transistors Operating Beyond 1 GHz Achieved by Optimizing the Channel and Gate DimensionsIEEE Transactions on Electron Devices:1377,2018.
【11】史胜男.A Tunable Frequency Selective Rasorber with Broad Passband and Low Transmission Loss at X-BandMATERIALS:5787,2023.
【12】.Label-free distinguish proliferative and apoptotic responses of glioma cells with terahertz metamaterialsSENSORS AND ACTUATORS B-CHEMICAL:133887,2023.
【13】.Label-free distinguish proliferative and apoptotic responses of glioma cells with terahertz metamaterialsSENSORS AND ACTUATORS B-CHEMICAL:133887,2023.
【14】史胜男.A Tunable Frequency Selective Rasorber with Broad Passband and Low Transmission Loss at X-BandMATERIALS:5787,2023.
【15】李美坪.Tunable plasmon-induced transparency in graphene-based plasmonic waveguide for terahertz band-stop filters24,2022.
【16】时彦朋.Terahertz Refractive Index Sensor Based on Enhanced Extraordinary Optical TransmissionCrystals,2022.
【17】时彦朋.Enhanced THz Transmission by Bull’s Eye Structure Integrated with a Concentric Gold HemisphereCrystals,2022.
【18】朱叶青.Independently tunable all-dielectric synthetic multi-spectral metamaterials based on Mie resonance. RSC advances, 12:20765-20770,2022.
【19】宋金梅.Enhanced extraordinary terahertz transmission through coupling between silicon resonators. NANOSCALE ADVANCES, 4:2494-2500,2022.
【20】李美坪.Tunable plasmon-induced transparency in graphene-based plasmonic waveguide for terahertz band-stop filters. Journal of Optics (United Kingdom), 24,2022.
【21】张翼飞.Tunable Surface Plasmon Polaritons with Monolithic Schottky DiodesACS Applied Electronic Materials:2124,2019.
【22】周泽鹏.Flexible Liquid Crystal Polymer Technologies from Microwave to Terahertz Frequencies. Molecules, 27,2022.
【23】时彦朋.Manipulating Optical Absorption of Indium Selenide Using Plasmonic NanoparticlesACS Omega:3000,2020.
【24】王汉斌.Two-Terminal InGaAs Microwave AmplifierMICROWAVE AND OPTICAL TECHNOLOGY LETTERS:1884,2018.
【25】花明.Electromagnetically induced transparency analog in terahertz hybrid metal-dielectric metamaterials. AIP ADVANCES, 11,2021.
【26】高梓杰.Tunable Extraordinary Optical Transmission with Graphene in Terahertz. ACS Omega, 6:29746,2021.
【27】徐晶晶.Preliminary Research on Cultivation Program of Biological Microelectronics,2021.
【28】孙渊博.A wide-angle and TE/TM polarization-insensitive terahertz metamaterial near-perfect absorber based on a multi-layer plasmonic structure. Nanoscale Advances, 3:4072,2021.
【29】李美坪.High-Q Fano Resonance in Subwavelength Stub-Wall-Coupled MDM Waveguide Structure and Its Terahertz Sensing Application. IEEE Access , 9:123939,2021.
【30】孙渊博.A wide-angle and TE/TM polarization-insensitive terahertz metamaterial near-perfect absorber based on a multi-layer plasmonic structure3:4072,2021.
【31】宋金梅.Enhanced broadband extraordinary terahertz transmission through plasmon coupling between metal hemisphere and hole arrays. Optical Materials Express, 11:2700,2021.
【32】花明.Electromagnetically induced transparency analog in terahertz hybrid metal–dielectric metamaterials. AIP Advances, 11,2021.
【33】时彦朋.Manipulating Optical Absorption of Indium Selenide Using Plasmonic Nanoparticles. ACS Omega, 5:3000,2020.
【34】凌昊天.Spoof surface plasmon polariton band-stop filter with single-loop split ring resonators. INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 30,2020.
【35】时彦朋.Active Modulation of an All-Dielectric Metasurface Analogue of Electromagnetically Induced Transparency in Terahertz. ACS Omega, 6:4480-4484,2021.
【36】时彦朋.High-Q metamaterials based on cavity mode resonance for THz sensing applications. AIP Advances, 7:075014,2020.
【37】时彦朋.Tunable Terahertz Metamaterials Based on Anapole Excitation with Graphene for Reconfigurable Sensors. ACS Applied nano materials, 3:2129-2133,2020.
【38】时彦朋.Manipulating Optical Absorption of Indium Selenide Using Plasmonic Nanoparticles. ACS Omega, 5:3000-3005,2020.
【39】辛倩, 宋爱民, 王一鸣, 时彦朋 and 张翼飞.Schottky-barrier thin-film transistors based on HfO2-capped InSe. APPLIED PHYSICS LETTERS, 115,2019.
【40】宋爱民, 张翼飞, 时彦朋, 王卿璞 and 王汉斌.Two-terminal InGaAs microwave amplifier. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 60:1884,2018.
【41】王一鸣, 辛倩, 宋爱民, 时彦朋, 李玉香 and 王卿璞.Amorphous-InGaZnO Thin-Film Transistors Operating Beyond 1 GHz Achieved by Optimizing the Channel and Gate Dimensions. IEEE Transactions on Electron Devices, 65:1377,2018.
【42】时彦朋.Disorder Improves Light Absorption in Thin Film Silicon Solar Cells with Hybrid Light Trapping StructureInternational Journal of Optics,2016.
【43】时彦朋.Light-absorption enhancement in thin-film silicon solar cells with front grating and rear-located nanoparticle gratingPhys. Status Solidi A,2014.
【44】时彦朋.新型硅薄膜太阳能电池混合陷光结构,2014.
【45】时彦朋.Nanopyramids and rear-located Ag nanoparticles for broad spectrum absorption enhancement in thin-film solar cellsOPTICS EXPRESS,2014.
【46】时彦朋.Extraordinary optical absorption based on diffraction grating and rear-located bilayer silver nanoparticlesApplied Physics Express,2014.
【47】时彦朋.Hybrid light trapping structures in thin-film silicon solar cellsJ. Opt.,2014.
【48】时彦朋.Multilayer silver nanoparticles for light trapping in thin film solar cellsJOURNAL OF APPLIED PHYSICS,2013.
专利名称 | 简介 | 日期 |
---|---|---|
一种基于腔模共振的太赫兹传感器及其制备方法 |
2023/03/14 |
|
TERAHERTZ ELECTROMAGNETICALLY INDUCED TRANSPARENT META-MATERIALS BASED ON ACTIVE TUNING OF GRAPHENE AND APPLICATION |
2021/11/24 |
|
TERAHERTZ ELECTROMAGNETICALLY INDUCED TRANSPARENT META-MATERIAL AND PREPARATION METHOD AND APPLICATION |
2021/11/24 |
|
TERAHERTZ DEVICE BASED ON ENHANCED EXTRAORDINARY OPTICAL TRANSMISSION AND PREPARATION METHOD |
2021/11/24 |
|
基于Fano共振耦合谐振腔太赫兹波导传感器件及其制备方法 |
2022/04/12 |
|
一种太赫兹电磁诱导透明超材料及其制备方法和应用 |
2022/03/04 |
|
一种吸波器及电子设备 |
2022/11/25 |
|
基于增强异常光学透射的太赫兹器件及其制备方法 |
2022/03/08 |
|
基于石墨烯主动调谐的太赫兹电磁诱导透明超材料与应用 |
||
基于anapole模式的可动态调控的石墨烯超材料太赫兹器件及其制备方法与应用 |
2021/04/27 |