电子邮箱:
 
                时彦朋,副教授,教学科研岗,硕士生导师;从事太赫兹生物医学传感领域的研究工作十余年,在太赫兹生物医学传感、超表面设计、超材料动态调控、人工智能器件逆向设计等方面有着丰富的研究经验和技术积累,主持和参与科技部国家重点研发计划、国家自然科学基金、山东省自然科学重大基础项目/课题10余项,在包括Nanophotonics、Optics Express、Sensors and Actuators B-Chemical、Biosensors等国际知名期刊上发表论文40余篇,其中第一作者和通讯作者的论文30余篇。申请人在国内外学术界具有较高的影响力,担任Frontier in Photonics和Crystals客座编辑,是Nano Letters、Optics Letters、Applied Physics Letters、Optics Express、Journal of Optics、Nanotechnology、Optics Materials Express等国际知名期刊的审稿人。
太赫兹波是一种电磁波,具有快速无标记、穿透性强、方向性好、能量低、对活体组织无害等优点,在生物医学传感领域有着巨大的应用潜力。在太赫兹波与生物医学样品相互作用的增强新机制研究方面,通过引入多种微结构如多层等离子体结构、腔模共振结构等,增强了太赫兹波与样品的作用,提升了器件传感灵敏度。这方面研究工作已被Nano Letters、Advanced Optical Materials、IEEE Transactions on Microwave Theory and Techniques、ACS Photonics等国内外期刊引用,其创新性得到认可。在基于超材料结构对新型太赫兹生物医学传感器设计方面,创新性地将Annapole模式引入到太赫兹传感器中,并实现了谐振调谐,达到多频段检测的目的。目前这方面研究工作已被Nature Communications、Nano Letters、Sensors and Actuators B: Chemical、Nanoscale、Advanced Optical Materials等期刊引用。结合角度复用技术,实现了非法添加剂、潜在致癌物、肿瘤代谢标志物、基因标志物等的特异性检测,相关结果已经发表在Biosensors、Journal of Physics D: Applied Physics等期刊上。此外,结合人工智能技术,已实现多场景的智能感知、太赫兹传感器件的逆向设计,利用多任务模型优化了太赫兹传感检测技术。
 
                国家自然科学基金委员会  ,计划局 ,无 ,借调工程师
山东大学  ,副教授
山东大学  ,博士后
 
                | 类别 | 专业 | 简介 | 人数 | 年份 | 
|---|---|---|---|---|
| 硕士研究生招生 | 微电子与固体电子学(学术硕士),电子信息(专业学位) | 招收学术硕士、专业硕士;欢迎微电子、物理、信息、材料等方向的同学报考!也欢迎学院本科生加入科研团队。 | 2025 | 
 
                | 名称 | 简介 | 
|---|---|
| 多源智能感知 | 主要包括:(1)太赫兹材料与器件;(2)太赫兹传感技术;(3)生物医学相关检测;(4)人工智能器件逆向设计。 | 
 
                | 项目名称 | 项目周期 | 
|---|---|
| (包干项目)基于人工表面等离激元的毫米波薄膜铌酸锂电光调制器 | 2025-05-01,2028-04-30 | 
| 人工智能识别交通信号标志研究 | 2025-04-23,2027-04-30 | 
| 基于柔性薄膜的6G太赫兹芯片与三维电路集成的研究(子课题1) | 2024-01-01,2026-12-30 | 
| 山东省自主可控服务器CPU发展战略研究 | 2024-01-26,2024-12-31 | 
| 高灵敏度可调控太赫兹传感器的研究 | 2019-04-26,2022-06-30 | 
| III-V 族半导体三维异质纳米线的原位构筑与红外探测应用 | 2017-07-01,2021-12-30 | 
| “猪脸识别”智能监控系统技术开发研究 | 2019-04-27,2023-05-26 | 
| 基于微腔结构的可调控太赫兹生化传感器的研究 | 2018-08-16,2021-12-31 | 
 
                【1】徐麒沅.All-Dielectric Metasurface-Based Terahertz Molecular Fingerprint Sensor for Trace Cinnamoylglycine Detection. Biosensors-Basel, 14,2024.
【2】孙铭骏.A Terahertz Metasurface Sensor Based on Quasi-BIC for Detection of Additives in Infant Formula. Nanomaterials, 14,2024.
【3】王伟进.Terahertz Fingerprint Metasurface Sensor Based on Temperature Variation for Trace Molecules. Biosensors-Basel, 14,2024.
【4】林杰.Enhancing Multi-Spectral Fingerprint Sensing for Trace Explosive Molecules with All-Silicon Metasurfaces. Nanomaterials, 14,2024.
【5】薛莹.Metasurface-based sensor with terahertz molecular fingerprint enhancement in trace additives identification. Journal of Physics D-Applied Physics, 57,2024.
【6】.A review of terahertz metamaterial sensors and their applications. Optics Communications, 556,2024.
【7】陈凯.Chalcogenide phase-change material advances programmable terahertz metamaterials: a non-volatile perspective for reconfigurable intelligent surfacesNANOPHOTONICS,2024.
【8】.Graphene-Tuned, Tightly Coupled Hybrid Plasmonic Meta-Atoms. Nanomaterials, 14,2024.
【9】刘悦扬.Enhanced Optical Transmission through a Hybrid Bull's Eye Structure Integrated with a Silicon Hemisphere. NANOMATERIALS, 13,2023.
【10】房久凯.Thermally Tunable Structural Color Based on Patterned Ultra-Thin Asymmetric Fabry-Perot Cavity with Phase-Change Material. Crystals, 13,2023.
【11】孙渊博.A wide-angle and TE/TM polarization-insensitive terahertz metamaterial near-perfect absorber based on a multi-layer plasmonic structureNanoscale Advances:4072,2021.
【12】刘自正.High-Q metamaterials based on cavity mode resonance for THz sensing applicationsAIP Advances,2020.
【13】刘笑宇.Tunable Terahertz Metamaterials Based on Anapole Excitation with Graphene for Reconfigurable SensorsACS Applied Nano Materials:2129,2020.
【14】孙恺祥.Terahertz Refractive Index Sensor Based on Enhanced Extraordinary Optical TransmissionCrystals,2022.
【15】李美坪.Tunable plasmon-induced transparency in graphene-based plasmonic waveguide for terahertz band-stop filtersJournal of Optics,2022.
【16】.Amorphous-InGaZnO Thin-Film Transistors Operating Beyond 1 GHz Achieved by Optimizing the Channel and Gate DimensionsIEEE Transactions on Electron Devices:1377,2018.
【17】史胜男.A Tunable Frequency Selective Rasorber with Broad Passband and Low Transmission Loss at X-BandMATERIALS:5787,2023.
【18】.Label-free distinguish proliferative and apoptotic responses of glioma cells with terahertz metamaterialsSENSORS AND ACTUATORS B-CHEMICAL:133887,2023.
【19】.Label-free distinguish proliferative and apoptotic responses of glioma cells with terahertz metamaterialsSENSORS AND ACTUATORS B-CHEMICAL:133887,2023.
【20】史胜男.A Tunable Frequency Selective Rasorber with Broad Passband and Low Transmission Loss at X-BandMATERIALS:5787,2023.
【21】李美坪.Tunable plasmon-induced transparency in graphene-based plasmonic waveguide for terahertz band-stop filters24,2022.
【22】时彦朋.Terahertz Refractive Index Sensor Based on Enhanced Extraordinary Optical TransmissionCrystals,2022.
【23】时彦朋.Enhanced THz Transmission by Bull’s Eye Structure Integrated with a Concentric Gold HemisphereCrystals,2022.
【24】朱叶青.Independently tunable all-dielectric synthetic multi-spectral metamaterials based on Mie resonance. RSC advances, 12:20765-20770,2022.
【25】宋金梅.Enhanced extraordinary terahertz transmission through coupling between silicon resonators. NANOSCALE ADVANCES, 4:2494-2500,2022.
【26】李美坪.Tunable plasmon-induced transparency in graphene-based plasmonic waveguide for terahertz band-stop filters. Journal of Optics (United Kingdom), 24,2022.
【27】张翼飞.Tunable Surface Plasmon Polaritons with Monolithic Schottky DiodesACS Applied Electronic Materials:2124,2019.
【28】周泽鹏.Flexible Liquid Crystal Polymer Technologies from Microwave to Terahertz Frequencies. Molecules, 27,2022.
【29】时彦朋.Manipulating Optical Absorption of Indium Selenide Using Plasmonic NanoparticlesACS Omega:3000,2020.
【30】王汉斌.Two-Terminal InGaAs Microwave AmplifierMICROWAVE AND OPTICAL TECHNOLOGY LETTERS:1884,2018.
【31】花明.Electromagnetically induced transparency analog in terahertz hybrid metal-dielectric metamaterials. AIP ADVANCES, 11,2021.
【32】高梓杰.Tunable Extraordinary Optical Transmission with Graphene in Terahertz. ACS Omega, 6:29746,2021.
【33】徐晶晶.Preliminary Research on Cultivation Program of Biological Microelectronics2021 IEEE International Conference on Educational Technology,2021.
【34】孙渊博.A wide-angle and TE/TM polarization-insensitive terahertz metamaterial near-perfect absorber based on a multi-layer plasmonic structure. Nanoscale Advances, 3:4072,2021.
【35】李美坪.High-Q Fano Resonance in Subwavelength Stub-Wall-Coupled MDM Waveguide Structure and Its Terahertz Sensing Application. IEEE Access , 9:123939,2021.
【36】孙渊博.A wide-angle and TE/TM polarization-insensitive terahertz metamaterial near-perfect absorber based on a multi-layer plasmonic structure3:4072,2021.
【37】宋金梅.Enhanced broadband extraordinary terahertz transmission through plasmon coupling between metal hemisphere and hole arrays. Optical Materials Express, 11:2700,2021.
【38】花明.Electromagnetically induced transparency analog in terahertz hybrid metal–dielectric metamaterials. AIP Advances, 11,2021.
【39】时彦朋.Manipulating Optical Absorption of Indium Selenide Using Plasmonic Nanoparticles. ACS Omega, 5:3000,2020.
【40】凌昊天.Spoof surface plasmon polariton band-stop filter with single-loop split ring resonators. INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 30,2020.
【41】时彦朋.Active Modulation of an All-Dielectric Metasurface Analogue of Electromagnetically Induced Transparency in Terahertz. ACS Omega, 6:4480-4484,2021.
【42】时彦朋.High-Q metamaterials based on cavity mode resonance for THz sensing applications. AIP Advances, 7:075014,2020.
【43】时彦朋.Tunable Terahertz Metamaterials Based on Anapole Excitation with Graphene for Reconfigurable Sensors. ACS Applied nano materials, 3:2129-2133,2020.
【44】时彦朋.Manipulating Optical Absorption of Indium Selenide Using Plasmonic Nanoparticles. ACS Omega, 5:3000-3005,2020.
【45】宋爱民, 王一鸣, 时彦朋, 张翼飞, 辛倩 and 辛倩.Schottky-barrier thin-film transistors based on HfO2-capped InSe. APPLIED PHYSICS LETTERS, 115,2019.
【46】宋爱民, 张翼飞, 时彦朋, 王卿璞 and 王汉斌.Two-terminal InGaAs microwave amplifier. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 60:1884,2018.
【47】时彦朋, 李玉香, 王卿璞, 王一鸣, 辛倩, 宋爱民 and 王一鸣.Amorphous-InGaZnO Thin-Film Transistors Operating Beyond 1 GHz Achieved by Optimizing the Channel and Gate Dimensions. IEEE Transactions on Electron Devices, 65:1377,2018.
【48】时彦朋 and 时彦朋.Disorder Improves Light Absorption in Thin Film Silicon Solar Cells with Hybrid Light Trapping StructureInternational Journal of Optics,2016.
【49】时彦朋 and 时彦朋.Light-absorption enhancement in thin-film silicon solar cells with front grating and rear-located nanoparticle gratingPhys. Status Solidi A,2014.
【50】时彦朋.新型硅薄膜太阳能电池混合陷光结构,2014.
【51】时彦朋 and 时彦朋.Nanopyramids and rear-located Ag nanoparticles for broad spectrum absorption enhancement in thin-film solar cellsOPTICS EXPRESS,2014.
【52】时彦朋 and 时彦朋.Extraordinary optical absorption based on diffraction grating and rear-located bilayer silver nanoparticlesApplied Physics Express,2014.
【53】时彦朋 and 时彦朋.Hybrid light trapping structures in thin-film silicon solar cellsJ. Opt.,2014.
【54】时彦朋 and 时彦朋.Multilayer silver nanoparticles for light trapping in thin film solar cellsJOURNAL OF APPLIED PHYSICS,2013.
 
                            | 专利名称 | 简介 | 日期 | 
|---|---|---|
| 一种基于腔模共振的太赫兹传感器及其制备方法 | 2023-03-14 | |
| TERAHERTZ ELECTROMAGNETICALLY INDUCED TRANSPARENT META-MATERIALS BASED ON ACTIVE TUNING OF GRAPHENE AND APPLICATION | 2021-11-24 | |
| TERAHERTZ ELECTROMAGNETICALLY INDUCED TRANSPARENT META-MATERIAL AND PREPARATION METHOD AND APPLICATION | 2021-11-24 | |
| TERAHERTZ DEVICE BASED ON ENHANCED EXTRAORDINARY OPTICAL TRANSMISSION AND PREPARATION METHOD | 2021-11-24 | |
| 基于Fano共振耦合谐振腔太赫兹波导传感器件及其制备方法 | 2022-04-12 | |
| 一种太赫兹电磁诱导透明超材料及其制备方法和应用 | 2022-03-04 | |
| 一种吸波器及电子设备 | 2022-11-25 | |
| 基于增强异常光学透射的太赫兹器件及其制备方法 | 2022-03-08 | |
| 基于石墨烯主动调谐的太赫兹电磁诱导透明超材料与应用 | ||
| 基于anapole模式的可动态调控的石墨烯超材料太赫兹器件及其制备方法与应用 | 2021-04-27 |