时彦朋

副教授

硕士生导师

电子邮箱: ypshi@sdu.edu.cn

个人简介

个人经历

  • 2020.01 -- 2020.12

    国家自然科学基金委员会  ,计划局 ,无 ,借调工程师

  • 2017.11 -- 至今

    山东大学  ,副教授

  • 2015.07 -- 2017.11

    山东大学  ,博士后

招生招聘

类别 专业 简介 人数 年份

硕士生招生

微电子与固体电子学(学术硕士),电子信息(专业学位)

招收学术硕士、专业硕士;欢迎微电子、物理、信息、材料等方向的同学报考!也欢迎学院本科生加入科研团队。

2025

授课信息

本科生课程名称 学期 学分 课程号

半导体材料

春学期

2.0

sd04030150

生物微电子导论

春学期

2.0

sd04031350

生物微电子导论

春学期

2.0

sd0401009V

量子力学

春学期

3.0

sd04030300

专业实习

秋学期

1.0

sd04030250

半导体表面与界面物理

春学期

0230006

科研方向

名称 简介

多源智能感知

主要包括:(1)太赫兹材料与器件;(2)太赫兹传感技术;(3)生物医学相关检测。

科研项目

项目名称 项目周期

基于柔性薄膜的6G太赫兹芯片与三维电路集成的研究(子课题1)

2024/01/01,2026/12/30

山东省自主可控服务器CPU发展战略研究

2024/01/26,2024/12/31

高灵敏度可调控太赫兹传感器的研究

2019/04/26,2022/06/30

III-V 族半导体三维异质纳米线的原位构筑与红外探测应用

2017/07/01,2021/06/30

“猪脸识别”智能监控系统技术开发研究

2019/04/27,2021/05/26

基于微腔结构的可调控太赫兹生化传感器的研究

2018/08/16,2021/12/31

主要论文

【1】刘悦扬.Enhanced Optical Transmission through a Hybrid Bull's Eye Structure Integrated with a Silicon Hemisphere. NANOMATERIALS, 13,2023.

【2】房久凯.Thermally Tunable Structural Color Based on Patterned Ultra-Thin Asymmetric Fabry-Perot Cavity with Phase-Change Material. CRYSTALS, 13,2023.

【3】孙渊博.A wide-angle and TE/TM polarization-insensitive terahertz metamaterial near-perfect absorber based on a multi-layer plasmonic structureNanoscale Advances:4072,2021.

【4】刘自正.High-Q metamaterials based on cavity mode resonance for THz sensing applicationsAIP Advances,2020.

【5】刘笑宇.Tunable Terahertz Metamaterials Based on Anapole Excitation with Graphene for Reconfigurable SensorsACS Applied Nano Materials:2129,2020.

【6】孙恺祥.Terahertz Refractive Index Sensor Based on Enhanced Extraordinary Optical TransmissionCrystals,2022.

【7】李美坪.Tunable plasmon-induced transparency in graphene-based plasmonic waveguide for terahertz band-stop filtersJournal of Optics,2022.

【8】.Amorphous-InGaZnO Thin-Film Transistors Operating Beyond 1 GHz Achieved by Optimizing the Channel and Gate DimensionsIEEE Transactions on Electron Devices:1377,2018.

【9】史胜男.A Tunable Frequency Selective Rasorber with Broad Passband and Low Transmission Loss at X-BandMATERIALS:5787,2023.

【10】.Label-free distinguish proliferative and apoptotic responses of glioma cells with terahertz metamaterialsSENSORS AND ACTUATORS B-CHEMICAL:133887,2023.

【11】.Label-free distinguish proliferative and apoptotic responses of glioma cells with terahertz metamaterialsSENSORS AND ACTUATORS B-CHEMICAL:133887,2023.

【12】史胜男.A Tunable Frequency Selective Rasorber with Broad Passband and Low Transmission Loss at X-BandMATERIALS:5787,2023.

【13】李美坪.Tunable plasmon-induced transparency in graphene-based plasmonic waveguide for terahertz band-stop filters24,2022.

【14】时彦朋.Terahertz Refractive Index Sensor Based on Enhanced Extraordinary Optical TransmissionCrystals,2022.

【15】时彦朋.Enhanced THz Transmission by Bull’s Eye Structure Integrated with a Concentric Gold HemisphereCrystals,2022.

【16】朱叶青.Independently tunable all-dielectric synthetic multi-spectral metamaterials based on Mie resonance. RSC advances, 12:20765-20770,2022.

【17】宋金梅.Enhanced extraordinary terahertz transmission through coupling between silicon resonators. NANOSCALE ADVANCES, 4:2494-2500,2022.

【18】李美坪.Tunable plasmon-induced transparency in graphene-based plasmonic waveguide for terahertz band-stop filters. Journal of Optics (United Kingdom), 24,2022.

【19】张翼飞.Tunable Surface Plasmon Polaritons with Monolithic Schottky DiodesACS Applied Electronic Materials:2124,2019.

【20】周泽鹏.Flexible Liquid Crystal Polymer Technologies from Microwave to Terahertz Frequencies. Molecules, 27,2022.

【21】时彦朋.Manipulating Optical Absorption of Indium Selenide Using Plasmonic NanoparticlesACS Omega:3000,2020.

【22】王汉斌.Two-Terminal InGaAs Microwave AmplifierMICROWAVE AND OPTICAL TECHNOLOGY LETTERS:1884,2018.

【23】花明.Electromagnetically induced transparency analog in terahertz hybrid metal-dielectric metamaterials. AIP ADVANCES, 11,2021.

【24】高梓杰.Tunable Extraordinary Optical Transmission with Graphene in Terahertz. ACS Omega, 6:29746,2021.

【25】徐晶晶.Preliminary Research on Cultivation Program of Biological Microelectronics,2021.

【26】孙渊博.A wide-angle and TE/TM polarization-insensitive terahertz metamaterial near-perfect absorber based on a multi-layer plasmonic structure. Nanoscale Advances, 3:4072,2021.

【27】李美坪.High-Q Fano Resonance in Subwavelength Stub-Wall-Coupled MDM Waveguide Structure and Its Terahertz Sensing Application. IEEE Access , 9:123939,2021.

【28】孙渊博.A wide-angle and TE/TM polarization-insensitive terahertz metamaterial near-perfect absorber based on a multi-layer plasmonic structure3:4072,2021.

【29】宋金梅.Enhanced broadband extraordinary terahertz transmission through plasmon coupling between metal hemisphere and hole arrays. Optical Materials Express, 11:2700,2021.

【30】花明.Electromagnetically induced transparency analog in terahertz hybrid metal–dielectric metamaterials. AIP Advances, 11,2021.

【31】时彦朋.Manipulating Optical Absorption of Indium Selenide Using Plasmonic Nanoparticles. ACS Omega, 5:3000,2020.

【32】凌昊天.Spoof surface plasmon polariton band-stop filter with single-loop split ring resonators. INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 30,2020.

【33】时彦朋.Active Modulation of an All-Dielectric Metasurface Analogue of Electromagnetically Induced Transparency in Terahertz. ACS Omega, 6:4480-4484,2021.

【34】时彦朋.High-Q metamaterials based on cavity mode resonance for THz sensing applications. AIP Advances, 7:075014,2020.

【35】时彦朋.Tunable Terahertz Metamaterials Based on Anapole Excitation with Graphene for Reconfigurable Sensors. ACS Applied nano materials, 3:2129-2133,2020.

【36】时彦朋.Manipulating Optical Absorption of Indium Selenide Using Plasmonic Nanoparticles. ACS Omega, 5:3000-3005,2020.

【37】辛倩, 宋爱民, 王一鸣, 时彦朋 and 张翼飞.Schottky-barrier thin-film transistors based on HfO2-capped InSe. APPLIED PHYSICS LETTERS, 115,2019.

【38】宋爱民, 张翼飞, 时彦朋, 王卿璞 and 王汉斌.Two-terminal InGaAs microwave amplifier. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 60:1884,2018.

【39】王一鸣, 辛倩, 宋爱民, 时彦朋, 李玉香 and 王卿璞.Amorphous-InGaZnO Thin-Film Transistors Operating Beyond 1 GHz Achieved by Optimizing the Channel and Gate Dimensions. IEEE Transactions on Electron Devices, 65:1377,2018.

【40】时彦朋.Disorder Improves Light Absorption in Thin Film Silicon Solar Cells with Hybrid Light Trapping StructureInternational Journal of Optics,2016.

【41】时彦朋.Light-absorption enhancement in thin-film silicon solar cells with front grating and rear-located nanoparticle gratingPhys. Status Solidi A,2014.

【42】时彦朋.新型硅薄膜太阳能电池混合陷光结构,2014.

【43】时彦朋.Nanopyramids and rear-located Ag nanoparticles for broad spectrum absorption enhancement in thin-film solar cellsOPTICS EXPRESS,2014.

【44】时彦朋.Extraordinary optical absorption based on diffraction grating and rear-located bilayer silver nanoparticlesApplied Physics Express,2014.

【45】时彦朋.Hybrid light trapping structures in thin-film silicon solar cellsJ. Opt.,2014.

【46】时彦朋.Multilayer silver nanoparticles for light trapping in thin film solar cellsJOURNAL OF APPLIED PHYSICS,2013.

专利著作

专利名称 简介 日期

一种基于腔模共振的太赫兹传感器及其制备方法

2023/03/14

TERAHERTZ ELECTROMAGNETICALLY INDUCED TRANSPARENT META-MATERIALS BASED ON ACTIVE TUNING OF GRAPHENE AND APPLICATION

2021/11/24

TERAHERTZ ELECTROMAGNETICALLY INDUCED TRANSPARENT META-MATERIAL AND PREPARATION METHOD AND APPLICATION

2021/11/24

TERAHERTZ DEVICE BASED ON ENHANCED EXTRAORDINARY OPTICAL TRANSMISSION AND PREPARATION METHOD

2021/11/24

基于Fano共振耦合谐振腔太赫兹波导传感器件及其制备方法

2022/04/12

一种太赫兹电磁诱导透明超材料及其制备方法和应用

2022/03/04

一种吸波器及电子设备

2022/11/25

基于增强异常光学透射的太赫兹器件及其制备方法

2022/03/08

基于石墨烯主动调谐的太赫兹电磁诱导透明超材料与应用

基于anapole模式的可动态调控的石墨烯超材料太赫兹器件及其制备方法与应用

2021/04/27

团队成员

类别 姓名

硕士生

张珊 史胜男 刘笑宇 宋金梅 李美坪