教师简介

师从浙江大学王明华教授进行集成光学方面的学习,一直从事集成光波导理论方面的研究,擅长数值计算,熟悉SOI、SiO2、铌酸锂等主流光波导材料的特性以及相关器件的设计制作,目前主攻光通讯专用光学芯片和光学传感芯片两个方向。

教育经历
  • 1996-09 — 2001-08
    浙江大学
    微电子与固体电子学
    博士
  • 1992-09 — 1996-07
    浙江大学
    电子信息工程
    工学学士学位
工作经历
  • 2003-04 — 2003-12
     日本筑波大学 物理系 
  • 2003-01 — 2008-12
     新加坡科技局 材料科学与工程研究所 (Institute of Material Research and Engineering) 
  • 2009-01 — 至今
     信息科学与工程学院 
研究概况
  1. 光通讯专用的光学芯片。

    围绕波导阵列光栅(AWG)开展的波长与带宽可调的滤波器、波分复器的理论研究,依托的材料为LNOI。

  2. 光学传感理论研究

    单波长光源+光功率计体系中,降低光源波长漂移造成的测量误差:波长漂移正负0.1nm时,将9%的误差降低至0.066%

    单波长光源+光功率计体系中,消除温度变化造成的测量误差:温度漂移正负10度时,将8%的误差降低至0.039%

    宽谱光源+光谱分析仪体系中,提出超量程理论,并在光波长测量器件中首先实现了超量程测量,正在向压力、温度、生化测量领域拓展。

  3. 基于集成光学的光学传感

    基于PLC工艺的SiO2压力传感器:基于AWG和MZ结构的大量程压力传感芯片,目前可实现1.1万米全海深测量,以及最高可达1000MPa的爆炸测量。主要特点是各种不同量程的快速定制(周期小于5天),并且量程定制不牺牲分辨率,各种量程的分辨率均为0.002%FS。

    基于结构应变的AMZIF结构光学温度传感器:利用铝合金与SiO2材料热膨胀系数的差异,借助光弹性效应实现温度测量,灵敏度可达54nm/度,高于大多数光纤传感。下一研究目标是利用超量程理论扩大量程。

    基于AMZIF结构的光波长计:利用体材料铌酸锂质子交换波导的单偏振特性,实现光波长的超量程测量,目前测量误差为10pm。

    基于AMZIF结构的生化传感器:即液体折射率测量,应用领域为医学检测、生物制药。目前我们的光学芯片可实现2.1万nm/RIU的超高灵敏度,与高水平光纤传感器持平。下一研究目标是突破十万级,并研究其适用超量程理论的特殊结构。

研究方向
论文成果

(1) 尹锐.Expansion of measurement range: Tolerance analysis and application of the two-peak method for optical sensors with a few spectral peaks.Measurement.2023,215

(2) 罗艳霞.Asymmetric Mach-Zehnder interferometer-based optical sensor with characteristics of both wavelength and temperature independence.Journal of Optics (India).2022,52 (3):1008-1021

(3) 张楠.集成马赫曾德干涉大量程高灵敏度压力传感器.《激光与光电子学进展》.2022 :1-11

(4) 尹锐.Nonlinear regression: A possible solution to larger dynamic range for some spectrum-based optical sensors.Measurement.2022,199

(5) 尹锐.Improving the self-imaging in multimode interference (MMI) couplers.Optica Applicata.2011,41 (3):679-685

(6) 尹锐.Integrated Ultrahigh-Sensitivity Temperature Sensor Based on Asymmetric Mach-Zehnder Interferometer and Stress Deformation of Aluminum-SiO2.《IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT》.2021,70

(7) 李景垚.Customizable Optical Pressure Sensor Based on Optimized Asymmetric Mach-Zehnder Interferometer: A Review.IEEE Sensors Journal.2020,20 (16):8903-8911

(8) 尹锐.Universal ultra-sensitive refractive index sensor based on an integrated SiO2 asymmetric Mach-Zehnder interference filter (AMZIF).Measurement.2022,188

(9) 季伟.Proposal for temperature-independent optical sensor based on asymmetric Mach–Zehnder interferometer.OPTICAL AND QUANTUM ELECTRONICS.2021 (11)

(10) 季伟.Highly Reliable Metro-Access Network Based on a Dual-Fiber Ring Architecture and Optimized Protection Mechanisms.IEEE Access1.2021 (9)

(11) 李景垚.Customizable Optical Pressure Sensor Based on Optimized Asymmetric Mach–Zehnder Interferometer: A Review.IEEE Sensors Journal.2020 (16)

(12) 尹锐.Integrated-optics pressure sensor with improved range and sensitivity based on a SiO2 arrayed waveguide grating (AWG) and a 3D printed stereolithography resin module.Measurement.2021,183

(13) 尹锐.Integrated pressure sensor with large range and linear measurement based on SiO2 arrayed waveguide grating (AWG).Measurement.2021,170

(14) 李景垚.Pressure sensor with large sensing dynamic range based on pressure-induced birefringence in LN crystal.量子光学.2021,53 (1)

(15) 罗艳霞.Proposal for a Wavelength-Independent Optical Sensor Based on an Asymmetric Mach-Zehnder Interferometer.CURRENT OPTICS AND PHOTONICS.2020,4 (6):558

(16) 公姿苏.LNOI waveguide grating based true time delay line for tunable bandpass microwave photonic filter.量子光学.2020,52 (10)

(17) 李景垚.Customizable Optical Pressure Sensor Based on Optimized Asymmetric Mach-Zehnder Interferometer: A Review.IEEE Sensors Journal.2020,20 (16):8903

(18) 公姿苏.Tunable Microwave Photonic Filter Based on LNOI Polarization Beam Splitter and Waveguide Grating.IEEE Photonic Technology Letter.2020,32 (13):787

(19) 李景垚.AWG optical filter with tunable central wavelength and bandwidth based on LNOI and electro-optic effect.OPTICS COMMUNICATIONS.2020,454

专利
版权所有   ©山东大学 地址:中国山东省济南市山大南路27号 邮编:250100 
查号台:(86)-0531-88395114
值班电话:(86)-0531-88364731 建设维护:山东大学信息化工作办公室