董人豪
教授
所属院部: 化学与化工学院
访问次数:
基本信息
  • 教师拼音名称:
    Dong Renhao
  • 电子邮箱:
    renhaodong@sdu.edu.cn
  • 所在单位:
    化学与化工学院
  • 学历:
    研究生(博士)毕业
  • 办公地点:
    中心校区生科北楼547
  • 性别:
  • 学位:
    理学博士学位
  • 在职信息:
    在职
  • 毕业院校:
    山东大学
  • 博士生导师
  • 硕士生导师
教师简介

       董人豪,山东大学教授,博士生导师,功能界面与高分子材料课题组(FILM)负责人。

       山东大学杰出中青年学者,山东省泰山学者青年专家计划,山东省杰青,国家海外高层次人才引进计划,胶体与界面化学攀登计划团队核心成员。本科和博士毕业于山东大学(胶体与界面化学教育部重点实验室,博士导师为郝京诚教授)。先后于德国马克思普朗克聚合物研究所 (Mainz) 和德国德累斯顿工业大学 (Dresden) 从事洪堡学者/博士后研究工作,合作导师为Klaus Muellen教授和冯新亮教授。2017年起于德国德累斯顿工业大学化学与食品化学学院和德累斯顿先进电子研究中心 (CFAED) 先后担任课题组长、独立PI、青年研究员和博士生导师。2021年于山东大学化学与化工学院胶体与界面化学教育部重点实验室建立FILM课题组 

       长期从事以表界面物理化学与高分子材料化学为基础的交叉领域研究,聚焦晶态功能高分子材料化学与应用基础,初步形成了界面限域二维聚合化学(I2DP)、二维聚合物分离膜(2DPM)、金属有机框架电子材料(MOFtronics)和有机二维范德华异质结(OvdWHs)等特色研究方向,推动表界面合成化学的基础研究和功能应用,推进功能高分子晶体材料在电子器件、膜分离和能源技术等领域的基本性质研究和应用探索,取得多项阶段性创新成果。

     至今已发表学术论文130余篇,代表性工作以第一作者或通讯作者分别发表在期刊Nature MaterialsNature ChemistryNature Synthesis等,论文引用次数13000+H-index51。担任The Innovation Materials、PCCP ChemPhysMaterPolymerCatalystsMaterials等期刊编委和特邀编辑,担任Science, Nat. Mater., Nat. Chem., Nat. Sustain., Nat. Commun., J. Am. Chem.Soc., Angew. Chem. Int. Ed., Chem. Sci., Adv. Mater.等国际期刊的审稿人,担任国家自然科学基金委员会、中国科技部、欧盟学术委员会、德国基金委、美国能源部、波兰基金委、ACS基金会等资助基金项目评审,德国化学会会员,中国化学会会员。获德国洪堡学者、欧盟科学委员会启动项目、英国皇家化学会JMCC新星科学家、欧洲青年科学院会士、全球高被引科学家等荣誉。

      课题组常年招聘胶体与界面化学、有机化学、高分子化学、材料化学、有机电子学、膜分离、能源电化学等方向的副研究员、科研助理、博士后、博士和硕士研究生。有意者请通过电子邮件或者微信联系,联系人:董人豪 renhaodong@sdu.edu.cn;微信号: hao166211





教育经历
  • 2004-9 — 2008-6
    山东大学
    化学基地
    理学学士
  • 2008-9 — 2013-6
    山东大学
    胶体与界面化学
    理学博士学位
研究领域


研究方向:功能界面与高分子材料

 

研究内容:长期从事以表界面物理化学与高分子材料化学为基础的交叉领域研究,具体包括:

1)界面分子可控组装及其表征技术

2)表界面二维聚合化学及其应用(气-液、气-固、液-液、液-固界面)

3)晶态功能高分子材料二维聚合物/2DP、二维共价有机框架/2D COF、二维共轭金属有机框架/2D c-MOF、二维超分子聚合物/2DSP、范德华异质结/vdWhs

4界面电子、离子和分子的输运性质研究(电子器件、膜分离、能源电化学等领域的应用基础研究)


20240408.jpg



科研成果
论文

1.  Control of the Hydroquinone/Benzoquinone Redox State in High‐Mobility Semiconducting Conjugated Coordination Polymers.  Angew. Chem. Int. Ed.,  e202320091, 2024. 

2.  On-Water Surface Synthesis of Vinylene-Linked Cationic Two- Dimensional Polymer Films as the Anion-Selective Electrode Coating.  Angew. Chem. Int. Ed.,  e202316299, 2024. 

3.  A Cu3BHT‐Graphene van der Waals Heterostructure with Strong Interlayer Coupling for Highly Efficient Photoinduced Charge Separation.  Adv. Mater.,  2311454, 2024. 

4.  Controlling Film Formation and Host‐Guest Interactions to Enhance the Thermoelectric Properties of Nickel‐Nitrogen‐Based Two‐Dimensional Conjugated Coordination Polymers.  Adv. Mater.,  2312325, 2024. 

5.  Tunable Charge Transport and Spin Dynamics in Two-Dimensional Conjugated Metal–Organic Frameworks.  J. Am. Chem. Soc.,  146,  2574-2582, 2024. 

6.  Site-selective chemical reactions by on-water surface sequential assembly.  Nat. Commun.,  14,  8313, 2023. 

7.  A General Synthesis of Nanostructured Conductive MOFs from Insulating MOF Precursors for Supercapacitors and Chemiresistive Sensors.  Angew. Chem. Int. Ed.,  e202313591, 2023. 

8.  Poly (benzimidazobenzophenanthroline)‐Ladder‐Type Two‐Dimensional Conjugated Covalent Organic Framework for Fast Proton Storage.  Angew. Chem. Int. Ed.,  e202310937, 2023. 

9.  Wavy Two-Dimensional Conjugated Metal–Organic Framework with Metallic Charge Transport.  J. Am. Chem. Soc.,  145,  23630–23638, 2023. 

10.  Solution-based self-assembly synthesis of two-dimensional-ordered mesoporous conducting polymer nanosheets with versatile properties.  Nature Protocols,  18,  2459–2484, 2023. 

11.  A Quasi-2D Polypyrrole Film with Band-Like Transport Behavior and High Charge-Carrier Mobility.  Adv. Mater.,  2303288, 2023. 

12.  Poly(benzimidazobenzophenanthroline)-Ladder-Type Two-Dimensional Conjugated Covalent Organic Framework for Fast Proton Storage.  Angew. Chem. Int. Ed.,  e202310937, 2023. 

13.  Hierarchical conductive metal-organic framework films enabling efficient interfacial mass transfer.  Nat. Commun.,  14,  3850, 2023. 

14.  Exceptionally high charge mobility in phthalocyanine-based poly(benzimidazobenzophenanthroline)-ladder-type two-dimensional conjugated polymers.  Nature Materials,  22,  880-887, 2023. 

15.  Precise tuning of interlayer electronic coupling in layered conductive metal-organic frameworks.  Nat. Commun.,  13,  7240, 2022. 

16.  Largely Pseudocapacitive Two-Dimensional Conjugated Metal–Organic Framework Anodes with Lowest Unoccupied Molecular Orbital Localized in Nickel-bis (dithiolene) Linkages.  J. Am. Chem. Soc.,  2023. 

17.  Near IR bandgap semiconducting 2D conjugated metal‐organic framework with rhombic lattice and high mobility.  Angew. Chem. Int. Ed.,  e202300186, 2023. 

18.  Ultrathin positively charged electrode skin for durable anion-intercalation battery chemistries.  Nat. Commun.,  14,  760, 2023. 

19.  Semiconducting Conjugated Coordination Polymer with High Charge Mobility Enabled by “4+ 2” Phenyl Ligands.  J. Am. Chem. Soc.,  145,  2430-2438, 2023. 

20.  Chemical Vapor Deposition and High-Resolution Patterning of a Highly Conductive Two-Dimensional Coordination Polymer Film.  J. Am. Chem. Soc.,  145,  152-159, 2022. 

21.  sp-Carbon Incorporated Conductive Metal-Organic Framework as Photocathode for Photoelectrochemical Hydrogen Generation.  Angew. Chem. Int. Ed.,  61,  e202208163, 2022. 

22.  Cation-selective two-dimensional polyimine membranes for high-performance osmotic energy conversion.  Nat. Commun.,  13,  3935, 2022. 

23.  Optimal acceleration voltage for near-atomic resolution imaging of layer-stacked 2D polymer thin films.  Nat. Commun.,  13,  3948, 2022. 

24.  Conductive 2D Conjugated Metal–Organic Framework Thin Films: Synthesis and Functions for (Opto-)electronics.  Small Structures,  3,  2100210, 2022. 

25.  Two-dimensional conjugated metal–organic frameworks for electrocatalysis: opportunities and challenges.  ACS Nano,  16,  1759–1780, 2022. 

26.  On-water surface synthesis of charged two dimensional polymer single crystals via the irreversible Katritzky reaction.  Nature Synthesis,  1,  69-76, 2022. 

27.  Boosting the Electrocatalytic Conversion of Nitrogen to Ammonia on Metal-Phthalocyanine-based Two-Dimensional Conjugated Co-valent Organic Frameworks.  J. Am. Chem. Soc.,  143,  19992–20000, 2021. 

28.  Mass Transfer in Boronate Ester 2D COF Single Crystals.  Small,  17,  2104392, 2021. 

29.  Viologen-Immobilized Two-Dimensional Polymer Film Enabling Highly Efficient Electrochromic Device for Solar-Powered Smart Window.  Adv. Mater.,  34,  2106073, 2021. 

30.  Real-time study of on-water chemistry: Surfactant monolayer-assisted growth of a crystalline quasi-2D polymer.  Chem,  7,  2758-2770, 2021. 

31.  Band-Like Charge Transport in Phytic Acid-Doped Polyaniline Thin Films.  Adv. Funct. Mater.,  31,  2105184, 2021. 

32.  Interfacial Synthesis of Layer-Oriented 2D Conjugated Metal–Organic Framework Films toward Directional Charge Transport.  J. Am. Chem. Soc.,  143,  13624–13632, 2021. 

33.  Dual-Redox-Sites Enable Two-Dimensional Conjugated Metal–Organic Frameworks with Large Pseudocapacitance and Wide Potential Window.  J. Am. Chem. Soc.,  143,  10168-10176, 2021. 

34.  Porous Dithiine-Linked Covalent Organic Framework as a Dynamic Platform for Covalent Polysulfide Anchoring in Lithium–Sulfur Battery Cathodes.  J. Am. Chem. Soc.,  144,  9101–9112, 2021. 

35.  Surface‐Modified Phthalocyanine‐Based Two‐Dimensional Conjugated Metal‐Organic Framework Films for Polarity‐Selective Chemiresistive Sensing.  Angew. Chem. Int. Ed.,  60,  18666-18672, 2021. 

36.  A Two‐Dimensional Polyimide‐Graphene Heterostructure with Ultra‐fast Interlayer Charge Transfer.  Angew. Chem. Int. Ed.,  60,  13859-13864, 2021. 

37.  Making large single crystals of 2D MOFs.  Nature Materials,  20,  122-123, 2021. 

38.  Two-dimensional conjugated metal–organic frameworks (2D c-MOFs): chemistry and function for MOFtronics.  Chem. Soc. Rev.,  50,  2764-2793, 2021. 

39.  High-Mobility Semiconducting Two-Dimensional Conjugated Covalent Organic Frameworks with p-Type Doping.  J. Am. Chem. Soc.,  142,  21622-21627, 2020. 

40.  Near–atomic-scale observation of grain boundaries in a layer-stacked two-dimensional polymer.  Sci. Adv.,  6,  eabb5976, 2020. 

41.  Electronic Devices Using Open Framework Materials.  Chem. Rev.,  120,  8581-8640, 2020. 

42.  Two-Dimensional Carbon-Rich Conjugated Frameworks for Electrochemical Energy Applications.  J. Am. Chem. Soc.,  142,  12903–12915, 2020. 

43.  Phthalocyanine‐Based 2D Conjugated Metal‐Organic Framework Nanosheets for High‐Performance Micro‐Supercapacitors.  Adv. Func. Mater.,  30,  2002664, 2020. 

44.  Two-Dimensional Conjugated Polymer Films via Liquid-Interface-Assisted Synthesis toward Organic Electronic Devices.  J. Mater. Chem. C,  8,  10696-10718, 2020. 

45.  Ultrathin Two-Dimensional Conjugated Metal-Organic Framework Single-Crystalline Nanosheets Enabled by Surfactant-Assisted Synthesis.  Chem. Sci.,  11,  7665-7671, 2020. 

46.  Synergistic Electroreduction of Carbon Dioxide to Carbon Monoxide on Bimetallic Layered Conjugated Metal-Organic Frameworks.  Nat. Commun.,  11,  1409, 2020. 

47.  Two-Dimensional Boronate Ester Covalent Organic Framework Thin Films with Large Single Crystalline Domains for Neuromorphic Memory Device.  Angew. Chem. Int. Ed.,  132,  8295-8301, 2020. 

48.  Demonstration of a Broadband Photodetector Based on a Two-Dimensional Metal-Organic Framework.  Adv. Mater.,  32,  1907063, 2020. 

49.  Highly Crystalline and Semiconducting Imine-Based Two-Dimensional Polymers Enabled by Interfacial Synthesis.  Angew. Chem. Int. Ed.,  59,  6028-6036, 2020. 

50.  Fully Conjugated Phthalocyanine Copper Metal–Organic Frameworks for Sodium–Iodine Batteries with Long-Time-Cycling Durability.  Adv. Mater.,  32,  1905361, 2019. 

51.  Unveiling Electronic Properties in Metal-Phthalocyanine-based Pyrazine-linked Conjugated Two-Dimensional Covalent Organic Frameworks.  J. Am. Chem. Soc.,  141,  16810–16816, 2019. 

52.  On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers.  Nature Chemistry,  11,  994-1000, 2019. 

53.  Engineering crystalline quasi-two-dimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances.  Nat. Commun.,  10,  4225, 2019. 

54.  A semiconducting layered metal-organic framework magnet.  Nat. Commun.,  10,  3260, 2019. 

55.  Phthalocyanine-based Layered Two-Dimensional Conjugated Metal-Organic Framework as Highly Efficient Electrocatalyst for Oxygen Reduction Reaction.  Angew. Chem. Int. Ed.,  58,  10677-10682, 2019. 

56.  High-Mobility Band-Like Charge Transport in a Semiconducting Two-Dimensional Metal-Organic Framework.  Nature Materials,  17,  1027-1032, 2018. 

57.  A Coronene-Based Semiconducting Two-Dimensional Metal-Organic Framework with Ferromagnetic Behavior.  Nat. Commun.,  9,  2637, 2018. 

58.  Liquid-Interface-Assisted Synthesis of Covalent- and Metal-Organic Two-Dimensional Crystalline Polymers.  npj 2D Materials and Applications,  2,  26, 2018. 

59.  Interface-Assisted Synthesis of 2D Materials: Trend and Challenges.  Chem. Rev.,  118,  6189–6235, 2018. 

60.  Ultrafast Delamination of Graphite into High‐Quality Graphene Using Alternating Currents.  Angew. Chem. Int. Ed.,  56,  6669-6675, 2017. 

61.  Coordination Polymer Framework Based On‐Chip Micro‐Supercapacitors with AC Line‐Filtering Performance.  Angew. Chem. Int. Ed.,  56,  3920-3924, 2017. 

62.  Persulfurated Coronene: A New Generation of “Sulflower”.  J. Am. Chem. Soc.,  139,  2168–2171, 2017. 

63.  Stimulus‐Responsive Micro‐Supercapacitors with Ultrahigh Energy Density and Reversible Electrochromic Window.  Adv. Mater.,  29,  1604491, 2016. 

64.  Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness.  Nat. Commun.,  7,  13461, 2016. 

65.  Immobilizing Molecular Metal Dithiolene–Diamine Complexes on 2D Metal–Organic Frameworks for Electrocatalytic H2 Production.  Chem. Eur. J.,  23,  2255-2260, 2016. 

66.  Two-Dimensional Mesoscale-Ordered Conducting Polymers.  Angew. Chem. Int. Ed.,  55,  12516 –12521, 2016. 

67.  Dual‐Template Synthesis of 2D Mesoporous Polypyrrole Nanosheets with Controlled Pore Size.  Adv. Mater.,  28,  8365-8370, 2016. 

68.  Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall‐Water‐Splitting Activity.  Angew. Chem. Int. Ed.,  55,  6702-6707, 2016. 

69.  Ultraflexible in‐plane micro‐supercapacitors by direct printing of solution‐processable electrochemically exfoliated graphene.  Adv. Mater.,  28,  2217-2222, 2016. 

70.  Free-standing monolayer two-dimensional supramolecular organic framework with good internal order.  J. Am. Chem. Soc.,  137,  14525–14532, 2015. 

71.  Hierarchical Transition‐Metal Dichalcogenide Nanosheets for Enhanced Electrocatalytic Hydrogen Evolution.  Adv. Mater.,  27,  7426-7431, 2015. 

72.  Controlled Synthesis of N‐Doped Carbon Nanospheres with Tailored Mesopores through Self‐Assembly of Colloidal Silica.  Angew. Chem. Int. Ed.,  54,  15191-15196, 2015. 

73.  Organic radical-assisted electrochemical exfoliation for the scalable production of high-quality graphene..  J. Am. Chem. Soc.,  137,  13927–13932, 2015. 

74.  Molecular metal-Nx centres in porous carbon for electrocatalytic hydrogen evolution.  Nat. Commun.,  6,  7992, 2015. 

75.  Large‐area, free‐standing, two‐dimensional supramolecular polymer single‐layer sheets for highly efficient electrocatalytic hydrogen evolution.  Angew. Chem. Int. Ed.,  54,  12058-12063, 2015. 

76.  Transparent conductive electrodes from graphene/PEDOT: PSS hybrid inks for ultrathin organic photodetectors.  Adv. Mater.,  27,  669-675, 2014. 

团队成员
团队名称:
功能界面与高分子材料 (FILM)
团队介绍:
团队目前包括1名教授、1名副研究员、1名高级实验员、1名行政秘书、3名博士后、3名科研助理、3名博士、9名硕士和8名本科生。
团队成员:
授课信息
版权所有   ©山东大学 地址:中国山东省济南市山大南路27号 邮编:250100 
查号台:(86)-0531-88395114
值班电话:(86)-0531-88364731 建设维护:山东大学信息化工作办公室