
Working-Papers
Financial statistics, Econometrics, Mathematical statistics, Biostatistics
WORKING PAPER:(*CORRESPONDING,#STUDENT SUPERVISED)
Liu D#, Zhao C#, He Y*, Guo Y, Liu L, Zhang X. Simultaneous Cluster Structure Learning and Estimation of Heterogeneous Graphs for Matrix-variate fMRI Data. Biometrics, revision under review. arXiv:2110.04516
He Y, Li Q#, Hu Q, Liu L. Transfer Learning in High-dimensional Semi-parametric Graphical Models with Application to Brain Connectivity Analysis. Statistics in Medicine, under revision. arXiv:2112.13356
He Y, Kong X, Yu L, Zhao P. Quantile factor analysis for large-dimensional time series with statistical guarantee. arXiv:2006.08214
He Y, Kong X, Trapani L, Yu L. One-way or Two-way Factor Model for Matrix Sequences? arXiv:2110.01008
He Y, Kong X, Trapani L, Yu L. Online Change-point Detection for Matrix-valued Time Series with Latent Two-way Factor Structure. arXiv:2112.13479
He Y, Kong X, Yu L, Zhang X, Zhao C#. Statistical Inference for Large-dimensional Matrix Factor Model from Least Squares and Huber Loss Points of View. arXiv:2112.04186
Chen H#, Guo Y, He Y*, Liu D#, Liu L, Zhou X. Joint Learning of Multiple Differential Networks for Matrix-variate Data with Application to Brain Connectivity Alteration Detection. arXiv:2106.03334
Yu L, He Y, Zhang X, Zhu J. Network-Assisted Estimation for Large-dimensional Factor Model with Guaranteed Convergence Rate Improvement. arXiv:2001.10955.
|
-
He Yong

 OfficePhone:8c4b23724ccf963179e068d844aeb628b370f6ae638e2863e02db30a7188f164b85b9523e82ba5c60928486a15de5c3af22e81a80fad7ac854e6c6904b08322565904c14355a405a392824148e7a14cb132e629ac0ea4a465384ad41eba51c9562f75c6510d49de09caf2f1f36c7465f5577335a35071d8b29cc73d4aab0675b
 PostalAddress:636e634d5d6b23bb47dd11a2d07e48f3d14514c92b266e841bf03ee6cd39f7bda4dd87b92f6c3516a928442363e28999c9d4e32def328e3eca2e782ccfe18c4cfe481c778f9eca91a324ac112eddd17cba423469d449ff35151e4cbacdc404720b3db961a7353c9be8755dda404df2a52b833d4706c72fd69571a3370cad4da0
 ZipCode:9f868b6b6032cfed5f620625219b5fd85e004861ef3543402150367142216a7048e173c8aefc01071389e10c9341432155235e6efc548f4a2fc85abfd4e1450e3703514033ab6230cb30d94584f0ec1c76aa12fe66a626d5a15a8c46a19ab5a4afbe025117268190af19a18bf10358b496ae4cd4f2bf9065b87fbffbc4eb7e99
|