刘国栋

个人信息Personal Information

教授 博士生导师 硕士生导师

性别:男

毕业院校:山东大学

学位:博士

在职信息:在职

所在单位:微生物技术研究院

入职时间:2016-06-15

学科:微生物学

办公地点:青岛市即墨滨海路72号山东大学青岛校区第周苑A座

扫描关注
当前位置: 中文主页 >> 科研
    1. 生物质降解转化技术

    2. 丝状真菌合成生物学


  • 2024

    Wang Y, Cao X, Jiang S, Gao L, Han X, Qu J, Jiang X, Liu G*, Qu Y. Engineering the substrate preference of glucose oxidase for the enzymatic oxidation of xylose. Green Chem, 2024, 26:4851.

    Zhao Q, Zhang Z, Liu Z, Liang H, Gao L, Zhao J*, Liu G*, Qu Y. A closed-loop strategy for on-site production of saccharolytic enzymes for lignocellulose biorefinery using internal lignocellulosic hydrolysates. Chem Eng J, 2024, 480:148272.

    Li S, Liu G*. Harnessing cellulose-binding protein domains for the development of functionalized cellulose materials. Bioresour Bioprocess, 2024, 11:74.

    2023

    Zhao Q, Yang Z, Xiao Z, Zhang Z, Xing J, Liang H, Gao L, Zhao J, Qu Y, Liu G*. Structure-guided engineering of transcriptional activator XYR1 for inducer-free production of lignocellulolytic enzymes in Trichoderma reeseiSynt Sys Biotechnol, 2023, 8:732–740.

    Xiao Z, Zhao Q, Li W, Gao L*, Liu G* (2023) Strain improvement of Trichoderma harzianum for enhanced biocontrol capacity: Strategies and prospects. Front Microbiol, 14:1146210. (Frontiers 2023 outstanding article)

    2022

    Gao L, Liu G (co-first author), Zhao Q, Xiao Z, Sun W, Hao X, Liu X, Zhang Z, Zhang P*. Customized optimization of lignocellulolytic enzyme cocktails for efficient conversion of pectin-rich biomass residues. Carbohydr Polym, 2022, 297:120025.

    Jiang S, Wang Y, Liu Q, Zhao Q, Gao L*, Song X, Li X, Qu Y, Liu G*. Genetic engineering and raising temperature enhance recombinant protein production with the cdna1 promoter in Trichoderma reeseiBioresour Bioprocess, 2022, 9:113.

    张建慧,李佳骏,高丽伟,Pankajkumar Ramdas Waghmare,曲径遥,刘国栋*. SARS-CoV-2 中和纳米抗体在里氏木霉中的重组表达. 生物工程学报,  2022, 38(6):2250–2258.

    2021

    Gao L, He X, Guo Y, Wu Z, Zhao J, Liu G*, Qu Y. Combinatorial engineering of transcriptional activators in Penicillium oxalicum for improved production of corn-fiber-degrading enzymes. J Agric Food Chem, 2021, 69(8):2539–2548.

    Zhao Q, Liu Q, Wang Q, Qin Y, Zhong Y, Gao L*, Liu G*, Qu Y. Disruption of the Trichoderma reesei gul1 gene stimulates hyphal branching and reduces broth viscosity in cellulase production. J Ind Microbiol Biotechnol, 2021, 48:kuab012.

    Wang Q, Zhao Q, Liu Q, He X, Zhong Y, Qin Y, Gao L*, Liu G*, Qu Y. CRISPR/Cas9-mediated genome editing in Penicillium oxalicum and Trichoderma reesei using 5S rRNA promoter-driven guide RNAs. Biotechnol Lett, 2021, 43(2):495–502.

    Waghmare PR, Waghmare PP, Gao L, Sun W, Qin Y, Liu G*, Qu Y. Efficient constitutive expression of cellulolytic enzymes in Penicillium oxalicum for improved efficiency of lignocellulose degradation. J Microbiol Biotechnol, 2021, 31(5): 740–746.

    Liu G*, Qu Y*. Integrated engineering of enzymes and microorganisms for improving the efficiency of industrial lignocellulose deconstruction. Eng Microbiol, 2021, 1:100005.

    刘国栋,高丽伟,曲音波*. 青霉生产木质纤维素降解酶系的研究进展. 生物工程学报, 2021, 37(3):1058–1069.

    2020

    Du J, Liang J, Gao X, Liu G*, Qu Y. Optimization of an artificial cellulase cocktail for high-solids enzymatic hydrolysis of cellulosic materials with different pretreatment methods. Bioresour Technol, 2020, 295:122272.

    Pan Y, Gao L, Zhang X, Qin Y*, Liu G*, Qu Y. The role of cross-pathway control regulator CpcA in the growth and extracellular enzyme production of Penicillium oxalicum. Curr Microbiol, 2020, 77(1):4954.

    2019

    Gao L, Xu Y, Song X, Li S, Xia C, Xu J, Qin Y, Liu G*, Qu Y. Deletion of the middle region of the transcription factor ClrB in Penicillium oxalicum enables cellulase production in the presence of glucose. J Biol Chem, 2019, 294(49):18685–18697.

    Liu G, Qu Y*. Engineering of filamentous fungi for efficient conversion of lignocellulose: Tools, recent advances and prospects. Biotechnol Adv, 2019, 37:519–529.

    Gao L, Li S, Xu Y, Xia C, Xu J, Liu J, Qin Y, Song X*, Liu G*, Qu Y. Mutation of a conserved alanine residue in transcription factor AraR leads to hyper‐production of α‐L‐arabinofuranosidases in Penicillium oxalicum. Biotechnol J, 2019, 14:1800643.

    2018

    Bergenholm D*, Liu G (co-first author), Holland P, Nielsen J*. Reconstruction of a global transcriptional regulatory network for control of lipid metabolism in yeast by using chromatin immunoprecipitation with lambda exonuclease digestion. mSystems, 2018, 3:e00215-17.

    Du J, Zhang X, Li X, Zhao J, Liu G*, Gao B, Qu Y. The cellulose binding region in Trichoderma reesei cellobiohydrolase I has a higher capacity in improving crystalline cellulose degradation than that of Penicillium oxalicum. Bioresour Technol, 2018, 266:19–25.

    Hu Y, Qin Y, Liu G*. Collection and curation of transcriptional regulatory interactions in Aspergillus nidulans and Neurospora crassa reveal structural and evolutionary features of the regulatory networks. Front Microbiol, 2018, 9:27.

    Qu J, Zhu J, Liu G*, Qu Y. Identification of key components for the optimization of cellulase mixtures using a proteomic strategy. In: Lübeck M. (eds) Cellulases. Methods in Molecular Biology, vol 1796. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7877-9_9

    2017

    Gao L, Xia C, Xu J, Li Z, Yu L, Liu G*, Song X*, Qu Y. Constitutive expression of chimeric transcription factors enables cellulase synthesis under non-inducing conditions in Penicillium oxalicum. Biotechnol J, 2017, 12(11):1700119.

    Peng S, Cao Q, Qin Y, Li X, Liu G*, Qu Y. An aldonolactonase AltA from Penicillium oxalicum mitigates the inhibition of β-glucosidase during lignocellulose biodegradation. Appl Microbiol Biotechnol, 2017, 101(9):3627–3636.

    Liu G, Chen Y, Færgeman NJ, Nielsen J*. Elimination of the last reactions in ergosterol biosynthesis alters the resistance of Saccharomyces cerevisiae to multiple stresses, FEMS Yeast Res, 2017, 17(6): fox063.

    2016

    Liu G, Bergenholm D, Nielsen J*. Genome-wide mapping of binding sites reveals multiple biological functions of the transcription factor Cst6p in Saccharomyces cerevisiae. mBio, 2016, 7(3):e00559-16.

    Rajkumar AS, Liu G, Bergenholm D, Arsovska D, Kristensen M, Nielsen J, Jensen MK*, Keasling JD. Engineering of synthetic, stress-responsive yeast promoters. Nucleic Acids Res, 2016, 44(17):e136.

    2014

    Liu G, Marras A, Nielsen J*. The future of genome-scale modeling of yeast through integration of a transcriptional regulatory network. Quant Biol, 2014, 2(1):30–46.

    2013

    Li J, Liu G*, Chen M, Li Z, Qin Y, Qu Y*. Cellodextrin transporters play important roles in cellulase induction in the cellulolytic fungus Penicillium oxalicum. Appl Microbiol Biotechnol, 2013, 97(24):10479–10488.

    Liu G, Qin Y, Li Z, Qu Y*. Development of highly efficient, low-cost lignocellulolytic enzyme systems in the post-genomic era. Biotechnol Adv, 2013, 31(6):962–975.

    Liu G, Qin Y, Li Z, Qu Y*. Improving lignocellulolytic enzyme production with Penicillium: from strain screening to systems biology. Biofuels, 2013, 4(5):523–534.

    Liu G, Zhang L, Qin Y, Zou G, Li Z, Yan X, Wei X, Chen M, Chen L, Zheng K, Zhang J, Ma L, Li J, Liu R, Xu H, Bao X, Fang X, Wang L, Zhong Y, Liu W, Zheng H, Wang S, Wang C, Xun L, Zhao GP*, Wang T*, Zhou Z*, Qu Y*. Long-term strain improvements accumulate mutations in regulatory elements responsible for hyper-production of cellulolytic enzymes. Sci Rep, 2013, 3:1569

    Liu G, Zhang L, Wei X, Zou G, Qin Y, Ma L, Li J, Zheng H, Wang S, Wang C, Xun L, Zhao GP, Zhou Z*, Qu Y*. Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens. PLOS ONE, 2013, 8(2): e55185.(PLOS ONE前10%高被引论文)

    Liu G, Qin Y, Hu Y, Gao M, Peng S, Qu Y*. An endo-1,4-β-glucanase PdCel5C from cellulolytic fungus Penicillium decumbens with distinctive domain composition and hydrolysis product profile. Enzyme Microb Technol, 2013, 52(3):190–195.

    2010

    Liu G, Wei X, Qin Y*, Qu Y*. Characterization of the endoglucanase and glucomannanase activities of a glycoside hydrolase family 45 protein from Penicillium decumbens 114-2. J Gen Appl Microbiol, 2010, 56(3):223–229.

    1. 刘国栋,王悦,高丽伟,曲音波. 木糖氧化能力提高的葡萄糖氧化酶突变体及其应用,专利号 ZL 2023 1 0162056.6

    2. 刘国栋,姜珊珊,赵芹芹,王悦,刘琴,曲音波. 一种里氏木霉cbh1基因启动子突变体及其构建方法和应用. 专利号 ZL 2021 1 1403041.1

    3. 刘国栋,赵芹芹,高丽伟,李雪芝,曲音波. 一种将木质纤维素水解液回用于发酵生产纤维素酶液的方法. 专利号 ZL 2021 1 1041885.6

    4. 刘国栋,曲音波,高丽伟,赵建. 一种降解植物多糖的酶系及其应用. 专利号 ZL 2020 1 1525326.8

    5. 曲音波,李世英,潘云军,高丽伟,刘国栋,宋欣. 一种真菌α-L-阿拉伯呋喃糖苷酶合成调控蛋白突变体及其应用,专利号 ZL 2018 1 1518650.X

    6. 曲音波,彭圣娟,刘国栋,李雪芝. 一种胞外醛糖酸内酯酶PoALAC及其应用,专利号 ZL 2016 1 1056999.7

    1. 国家自然科学基金面上项目,32170037,2022.1-2025.12,主持

    2. 国家重点研发计划子课题,2018YFA0900503-2,2019.7-2024.6,主持

    3. 国家自然科学基金青年项目,31700062,2018.1-2020.12,主持

    4. 山东大学青年学者“未来计划”经费,2018.7-2023.6,主持

    5. 生物反应器工程国家重点实验室开放课题,2018.9-2020.8,主持

    6. 山东省自然科学基金,ZR2017BC088,2017.8-2019.12,主持

    7. 中国博士后科学基金,2017M612260,2017.6-2018.12,主持

    8. 山东省博士后创新项目专项资金(一等),201701008,2017.9-2018.12,主持

    9. 山东大学基本科研业务费(人才引进与培养类专项),2016GN022,2016.7-2018.12,主持

    10. 国家自然科学基金重点项目,31030001,2011.1-2014.12,参与