个人信息Personal Information
研究员 博士生导师 硕士生导师
性别:男
毕业院校:山东大学
学位:博士生
在职信息:在职
所在单位:微生物技术研究院
入职时间:2016-06-15
学科:微生物学
办公地点:青岛市即墨滨海路72号山东大学青岛校区第周苑A座
电子邮箱:gdliu@sdu.edu.cn
2024
Wang Y, Cao X, Jiang S, Gao L, Han X, Qu J, Jiang X, Liu G*, Qu Y. Engineering the substrate preference of glucose oxidase for the enzymatic oxidation of xylose. Green Chem, 2024, DOI: 10.1039/D3GC04981G
Zhao Q, Zhang Z, Liu Z, Liang H, Gao L, Zhao J*, Liu G*, Qu Y. A closed-loop strategy for on-site production of saccharolytic enzymes for lignocellulose biorefinery using internal lignocellulosic hydrolysates. Chem Eng J, 2024, 480:148272.
2023
Zhao Q, Yang Z, Xiao Z, Zhang Z, Xing J, Liang H, Gao L, Zhao J, Qu Y, Liu G*. Structure-guided engineering of transcriptional activator XYR1 for inducer-free production of lignocellulolytic enzymes in Trichoderma reesei. Synt Sys Biotechnol, 2023, 8:732–740
Xiao Z, Zhao Q, Li W, Gao L*, Liu G* (2023) Strain improvement of Trichoderma harzianum for enhanced biocontrol capacity: Strategies and prospects. Front Microbiol, 14:1146210. (Frontiers 2023 outstanding article)
2022
Gao L, Liu G (co-first author), Zhao Q, Xiao Z, Sun W, Hao X, Liu X, Zhang Z, Zhang P*. Customized optimization of lignocellulolytic enzyme cocktails for efficient conversion of pectin-rich biomass residues. Carbohydr Polym, 2022, 297:120025.
Jiang S, Wang Y, Liu Q, Zhao Q, Gao L*, Song X, Li X, Qu Y, Liu G*. Genetic engineering and raising temperature enhance recombinant protein production with the cdna1 promoter in Trichoderma reesei, Bioresour Bioprocess, 2022, 9:113.
张建慧,李佳骏,高丽伟,Pankajkumar Ramdas Waghmare,曲径遥,刘国栋*. SARS-CoV-2 中和纳米抗体在里氏木霉中的重组表达. 生物工程学报, 2022, 38(6):2250–2258.
2021
Gao L, He X, Guo Y, Wu Z, Zhao J, Liu G*, Qu Y. Combinatorial engineering of transcriptional activators in Penicillium oxalicum for improved production of corn-fiber-degrading enzymes. J Agric Food Chem, 2021, 69(8):2539–2548.
Zhao Q, Liu Q, Wang Q, Qin Y, Zhong Y, Gao L*, Liu G*, Qu Y. Disruption of the Trichoderma reesei gul1 gene stimulates hyphal branching and reduces broth viscosity in cellulase production. J Ind Microbiol Biotechnol, 2021, 48:kuab012.
Wang Q, Zhao Q, Liu Q, He X, Zhong Y, Qin Y, Gao L*, Liu G*, Qu Y. CRISPR/Cas9-mediated genome editing in Penicillium oxalicum and Trichoderma reesei using 5S rRNA promoter-driven guide RNAs. Biotechnol Lett, 2021, 43(2):495–502.
Waghmare PR, Waghmare PP, Gao L, Sun W, Qin Y, Liu G*, Qu Y. Efficient constitutive expression of cellulolytic enzymes in Penicillium oxalicum for improved efficiency of lignocellulose degradation. J Microbiol Biotechnol, 2021, 31(5): 740–746.
Liu G*, Qu Y*. Integrated engineering of enzymes and microorganisms for improving the efficiency of industrial lignocellulose deconstruction. Eng Microbiol, 2021, 1:100005.
刘国栋,高丽伟,曲音波*. 青霉生产木质纤维素降解酶系的研究进展. 生物工程学报, 2021, 37(3):1058–1069.
2020
Du J, Liang J, Gao X, Liu G*, Qu Y. Optimization of an artificial cellulase cocktail for high-solids enzymatic hydrolysis of cellulosic materials with different pretreatment methods. Bioresour Technol, 2020, 295:122272.
Pan Y, Gao L, Zhang X, Qin Y*, Liu G*, Qu Y. The role of cross-pathway control regulator CpcA in the growth and extracellular enzyme production of Penicillium oxalicum. Curr Microbiol, 2020, 77(1):49–54.
2019
Gao L, Xu Y, Song X, Li S, Xia C, Xu J, Qin Y, Liu G*, Qu Y. Deletion of the middle region of the transcription factor ClrB in Penicillium oxalicum enables cellulase production in the presence of glucose. J Biol Chem, 2019, 294(49):18685–18697.
Liu G, Qu Y*. Engineering of filamentous fungi for efficient conversion of lignocellulose: Tools, recent advances and prospects. Biotechnol Adv, 2019, 37:519–529.
Gao L, Li S, Xu Y, Xia C, Xu J, Liu J, Qin Y, Song X*, Liu G*, Qu Y. Mutation of a conserved alanine residue in transcription factor AraR leads to hyper‐production of α‐L‐arabinofuranosidases in Penicillium oxalicum. Biotechnol J, 2019, 14:1800643.
2018
Bergenholm D*, Liu G (co-first author), Holland P, Nielsen J*. Reconstruction of a global transcriptional regulatory network for control of lipid metabolism in yeast by using chromatin immunoprecipitation with lambda exonuclease digestion. mSystems, 2018, 3:e00215-17.
Du J, Zhang X, Li X, Zhao J, Liu G*, Gao B, Qu Y. The cellulose binding region in Trichoderma reesei cellobiohydrolase I has a higher capacity in improving crystalline cellulose degradation than that of Penicillium oxalicum. Bioresour Technol, 2018, 266:19–25.
Hu Y, Qin Y, Liu G*. Collection and curation of transcriptional regulatory interactions in Aspergillus nidulans and Neurospora crassa reveal structural and evolutionary features of the regulatory networks. Front Microbiol, 2018, 9:27.
Qu J, Zhu J, Liu G*, Qu Y. Identification of key components for the optimization of cellulase mixtures using a proteomic strategy. In: Lübeck M. (eds) Cellulases. Methods in Molecular Biology, vol 1796. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7877-9_9
2017
Gao L, Xia C, Xu J, Li Z, Yu L, Liu G*, Song X*, Qu Y. Constitutive expression of chimeric transcription factors enables cellulase synthesis under non-inducing conditions in Penicillium oxalicum. Biotechnol J, 2017, 12(11):1700119.
Peng S, Cao Q, Qin Y, Li X, Liu G*, Qu Y. An aldonolactonase AltA from Penicillium oxalicum mitigates the inhibition of β-glucosidase during lignocellulose biodegradation. Appl Microbiol Biotechnol, 2017, 101(9):3627–3636.
Liu G, Chen Y, Færgeman NJ, Nielsen J*. Elimination of the last reactions in ergosterol biosynthesis alters the resistance of Saccharomyces cerevisiae to multiple stresses, FEMS Yeast Res, 2017, 17(6): fox063.
2016
Liu G, Bergenholm D, Nielsen J*. Genome-wide mapping of binding sites reveals multiple biological functions of the transcription factor Cst6p in Saccharomyces cerevisiae. mBio, 2016, 7(3):e00559-16.
Rajkumar AS, Liu G, Bergenholm D, Arsovska D, Kristensen M, Nielsen J, Jensen MK*, Keasling JD. Engineering of synthetic, stress-responsive yeast promoters. Nucleic Acids Res, 2016, 44(17):e136.
2014
Liu G, Marras A, Nielsen J*. The future of genome-scale modeling of yeast through integration of a transcriptional regulatory network. Quant Biol, 2014, 2(1):30–46.
2013
Li J, Liu G*, Chen M, Li Z, Qin Y, Qu Y*. Cellodextrin transporters play important roles in cellulase induction in the cellulolytic fungus Penicillium oxalicum. Appl Microbiol Biotechnol, 2013, 97(24):10479–10488.
Liu G, Qin Y, Li Z, Qu Y*. Development of highly efficient, low-cost lignocellulolytic enzyme systems in the post-genomic era. Biotechnol Adv, 2013, 31(6):962–975.
Liu G, Qin Y, Li Z, Qu Y*. Improving lignocellulolytic enzyme production with Penicillium: from strain screening to systems biology. Biofuels, 2013, 4(5):523–534.
Liu G, Zhang L, Qin Y, Zou G, Li Z, Yan X, Wei X, Chen M, Chen L, Zheng K, Zhang J, Ma L, Li J, Liu R, Xu H, Bao X, Fang X, Wang L, Zhong Y, Liu W, Zheng H, Wang S, Wang C, Xun L, Zhao GP*, Wang T*, Zhou Z*, Qu Y*. Long-term strain improvements accumulate mutations in regulatory elements responsible for hyper-production of cellulolytic enzymes. Sci Rep, 2013, 3:1569
Liu G, Zhang L, Wei X, Zou G, Qin Y, Ma L, Li J, Zheng H, Wang S, Wang C, Xun L, Zhao GP, Zhou Z*, Qu Y*. Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens. PLOS ONE, 2013, 8(2): e55185.(PLOS ONE前10%高被引论文)
Liu G, Qin Y, Hu Y, Gao M, Peng S, Qu Y*. An endo-1,4-β-glucanase PdCel5C from cellulolytic fungus Penicillium decumbens with distinctive domain composition and hydrolysis product profile. Enzyme Microb Technol, 2013, 52(3):190–195.
2010
Liu G, Wei X, Qin Y*, Qu Y*. Characterization of the endoglucanase and glucomannanase activities of a glycoside hydrolase family 45 protein from Penicillium decumbens 114-2. J Gen Appl Microbiol, 2010, 56(3):223–229.