硕士生导师
教师姓名:刘国良
教师英文名称:Guoliang Liu
教师拼音名称:Liu Guoliang
入职时间:2014-09-06
所在单位:控制科学与工程学院
职务:自动化系副主任
学历:研究生(博士)毕业
办公地点:千佛山校区创新大厦
性别:男
联系方式:liuguoliang@sdu.edu.cn
学位:博士生
职称:教授
在职信息:在职
主要任职:自动化系副主任
其他任职:山东省自动化学会副秘书长
毕业院校:德国哥廷根大学
学科:控制理论与控制工程
传统的人体动作在线识别多是离线的,即输入是已分割好的动作片段,而在线行为识别的动作开始和结束均是不确定的。本文提出了一种基于记忆组采样机制的在线行为识别方法,同时考虑相邻时刻运动信息,和长时运动信息,并给予不同采样权重。另外,本文提出了融合骨架关节高层几何结构特征和全局运动特征的动作描述方法。通过在公开数据集验证,实现了比算法较优的效果。论文线上预印本:
http://arxiv.org/abs/2011.00553
\\ arXiv:2011.00553 From: Guoliang Liu Prof. Dr. <liuguoliang@sdu.edu.cn> Date: Sun, 1 Nov 2020 16:43:08 GMT (487kb,D) Date (revised v2): Tue, 3 Nov 2020 05:09:10 GMT (564kb,D) Title: Memory Group Sampling Based Online Action Recognition Using Kinetic Skeleton Features Authors: Guoliang Liu, Qinghui Zhang, Yichao Cao, Junwei Li, Hao Wu and Guohui Tian Categories: cs.CV cs.HC License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/\\ Online action recognition is an important task for human centered intelligent services, which is still difficult to achieve due to the varieties and uncertainties of spatial and temporal scales of human actions. In this paper, we propose two core ideas to handle the online action recognition problem. First, we combine the spatial and temporal skeleton features to depict the actions, which include not only the geometrical features, but also multi-scale motion features, such that both the spatial and temporal information of the action are covered. Second, we propose a memory group sampling method to combine the previous action frames and current action frames, which is based on the truth that the neighbouring frames are largely redundant, and the sampling mechanism ensures that the long-term contextual information is also considered. Finally, an improved 1D CNN network is employed for training and testing using the features from sampled frames. The comparison results to the state of the art methods using the public datasets show that the proposed method is fast and efficient, and has competitive performance \\