论文发表 查看更多>>

主要论文

1. Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics. Nature Communications, 2022, 13(1): 7432. 第一作者 IF: 17.7

2. Low Power Memristor for Neuromorphic Computing: From Materials to Applications. Nano Micro Letters, 2025, Accepted 通讯作者 IF:31.6

3. Innovative Ultralow Thermal Budget ZrHfOx Ferroelectric Films with Low-Temperature Phase Transition for Next-Generation High-Speed Multifunctional Devices. Nano Letters, 2025, 25 (1), 157-165 通讯作者 IF: 12.3

4. Effect of LanthanumAluminum CoDoping on Structure of Hafnium Oxide Ferroelectric Crystals. Advanced Science, 2025, 12, 2410765. 通讯作者 IF: 17.5

5. 3D Trench Hf0.5Zr0.5O2 -Based 32 Kbit 1T1C FeRAM Chip with 2/5 ns Write/Read Speed, Low Power Consumption (0.605 pJ/bit) and Prominent High-Temperature Reliability (Baking @ 175°C). IEDM Dec. 2024, pp. 1-4. San Francisco, US.集成电路器件顶会

6. Novel Two-Terminal Synapse/Neuron Based on Antiferroelectric Hafnium Zirconium Oxide Device for Neuromorphic Computing. Nano Letters, 2024, 24(36): 11170-11178. 通讯作者 IF: 12.3

7. Fluorite-structured antiferroelectric hafnium-zirconium oxide for emerging nonvolatile memory and neuromorphic-computing applications. Applied Physics Reviews, 2024, 11(2). 通讯作者 IF: 19.5

8. 3D Nano Hafnium-Based Ferroelectric Memory Vertical Array for High-Density and High-Reliability Logic-In-Memory Application.  Advanced Electronic Materials, 2024, 2400438. 通讯作者 

9. Low-power and high-speed HfLaO-based FE-TFTs for artificial synapse and reconfigurable logic applications. Materials Horizons, 2024, 11(2): 490-498.  通讯作者 IF: 15.7

10. La-Doped HZO (La:HZO) Ferroelectric Devices Toward High-Temperature Application. IEEE Transactions on Electron Devices, 2024, 71(9), 5375-5379. 通讯作者

11. Improved Ferroelectricity and Tunneling Electroresistance by Inducing the ZrO 2 Intercalation Layer in La:HfO 2 Thin FilmsACS Applied Electronic Materials. 2024 通讯作者

12. The Doping Effect on the Intrinsic Ferroelectricity in Hafnium Oxide-Based Nano-Ferroelectric Devices. Nano Letters, 2023, 23(10): 4675-4682. 通讯作者 IF: 12.3

13.  Flexible aluminum-doped hafnium oxide ferroelectric synapse devices for neuromorphic computing. Materials Horizons, 2023, 10(9): 3643-3650.  通讯作者 IF: 15.7

14. Enhanced Ferroelectricity in HfBased Ferroelectric Device with ZrO2 Regulating Layer. Advanced Electronic Materials, 2023, 9(8): 2300208. 通讯作者 

15. Ultralow Power Wearable Organic Ferroelectric Device for Optoelectronic Neuromorphic Computing. Nano Letters, 2022, 22(15), 6435- 6443.  通讯作者 IF: 12.3

16. Ultralow Power Wearable Heterosynapse with Photoelectric Synergistic Modulation. 2020, 7, 1903480. Advanced Science. (封面文章第一作者 IF:17.5

17. Three-Dimensional Nanoscale Flexible Memristor Networks with Ultralow Power for Information Transmission and Processing Application. Nano Letters2020, 20(6), 4111- 4120. (封面文章第一作者 IF: 12.3

18. Robust DNABridged Memristor for Textile Chips. Angew. Chem. Int. Ed2020, 59, 1- 8. (编辑高亮论文)共一作者 IF:16.8

19. Reconfigurable optoelectronic memristor for in-sensor computing applications. Nano Energy, 2021, 89: 106291.  第一作者 IF:19.1

20. Flexible 3D Memristor Array for Binary Storage and Multi-states Neuromorphic Computing Applications. InfoMat2021, 3(2): 212-221. 共一作者 IF:25.4

21. CMOS back-end compatible memristors for in situ digital and neuromorphic computing applications. Materials Horizons, 2021, 8(12): 3345-3355.  通讯作者 IF: 15.7

22. Fully transparent, flexible and waterproof synapses with pattern recognition in organic environments. Nanoscale Horizons2019, 4(6), 1293-1301. (封面论文)第一作者 IF:11.7

23. Analog ferroelectric domain-wall memories and synaptic devices integrated with Si substrates. Nano Research2021: 1-8. 共一作者  IF:10.3  

24. Forming-free Flexible Memristor with Multilevel Storage for Neuromorphic Computing by Full PVD Technique. Journal of Materials Science & Technology.  2020,60,21-26. 共一作者 IF:10.3  

25. Flexible electronic synapses for face recognition application with multimodulated conductance states. ACS Applied Materials & Interfaces. 2018, 10(43): 37345-37352. 第一作者  IF:10.4   

26. Ferroelectric Hafnium Oxide Films for In-Memory Computing Applications. Advanced Electronic Materials, 2022: 2200951. 通讯作者

27. Room-Temperature Developed Flexible Biomemristor with Ultralow Switching Voltage for Array Learning. Nanoscale. 2020,12(16),9116-9123. 共一作者

28. Atomic Layer Deposited Hf0.5Zr0.5O2-based Flexible Memristor with Short/Long-Term Synaptic Plasticity. Nanoscale research letters2019,14(1),102.  第一作者

29. Effect of doping concentration on intrinsic ferroelectric properties of HfLaO-based ferroelectric memory. IEEE Electron Device Letters, 2024. Accepted 通讯作者

30. CMOS compatible low power consumption ferroelectric synapse for neuromorphic computing. IEEE Electron Device Letters, 2023, 44(3): 532-535. 通讯作者

31. Stabilizing the ferroelectric phase in HfAlO ferroelectric tunnel junction with different bottom electrodes. IEEE Electron Device Letters, 2023,44(6):947-950. 通讯作者

32. Improved Ferroelectricity and tunnelling electro resistance in Zr-Rich HfxZr1-xO2 ferroelectric tunnel junction. IEEE Electron Device Letters, 2023, 44(2):245-248. 通讯作者

33. Ferroelectric and Antiferroelectric Phenomenon in Lanthanum doped Hafnium based Thin Films. IEEE Electron Device Letters, 2023, 44(9):1472-1475.通讯作者

34. Hafnium-Based Ferroelectric Memory Device With Integrated Selective Function Using Crested Band Structure. IEEE Transactions on Electron Devices, 2023,70(10):5113-5118. 通讯作者

35. Physical Mechanisms Behind the Annealing Temperature Effect on Ferroelectric Phase in HfAlO FTJs by First-Principles Calculations. IEEE Transactions on Electron Devices, 2023, 70(10):5107-5112. 通讯作者

36. Understanding the Effect of Oxygen Content on Ferroelectric Properties of Al-Doped HfO Thin Films. IEEE Electron Device Letters, 2022, 44(1): 56-59. 通讯作者

37. Organic Optoelectronic Synaptic Devices for Energy-Efficient Neuromorphic Computing. IEEE Electron Device Letters2022, 43(7)1089-1092.  通讯作者

38. Artificial Vision Adaptation Based on Optoelectronic Neuromorphic Transistors. IEEE Electron Device Letters2022, 43(11), 1917-1920.  通讯作者


专利著作 查看更多>>

发明专利申请授权

1. 一种高耐久存算一体器件及其制备方法 CN202311748781.8

2. 一种兼具高速与低功耗的存算一体器件及其制备方法 CN202311748792.6

3. 一种感存算器件及制备方法 CN202211242145.3

4. 一种基于柔性衬底的感存算器件及制备方法 CN202211242840.X

5. 一种改善铪基铁电器件耐受性的方法 CN202211112661.4

6. 一种通过插层技术优化铁电MOS电容性能的方法 CN202211112658.2

7. 一种柔性NAND闪存存储器及其制备方法 CN202210930734.4

8. 一种高耐久性柔性神经形态器件及其制备方法 CN202210930716.6

9. 一种具有选通与多比特存储功能的阵列集成器件及其制备方法 CN202210930943.9

10. 一种三栅型六位存储器件及其制备方法 CN202210930733.X

11. 一种阈值电压可调的超薄氧化铟锡薄膜晶体管的制备方法 CN202210917408.X

12. 基于ZrO2插层的多比特铁电场效应晶体管及其制备方法 CN202210918681.4

13. 一种铁电3D堆叠环栅晶体管的制备方法 CN202210918679.7

14. 一种改善铪基铁电器件性能的方法 CN202210920069.0

15. 一种三维集成多功能忆阻器及其制备方法 CN202210903267.6

16. 一种低功耗织物型神经形态器件及其制备方法 CN202210896104.X

17. 一种嗅觉感存算一体化忆阻器及其制备方法 CN202210896285.6

18. 一种多端仿树突型神经形态器件及其制备方法 CN202210896084.6

19. 一种新型可穿戴存储器及其制备方法 CN202210896282.2

20. 一种具有局域调控特性的铁电多值存储器及其制备方法 CN202210608891.3


荣誉奖励 查看更多>>

获奖时间 奖项名称

2024

山东省泰山学者青年专家

2023

教育部自然科学二等奖

2022

Chip中国芯片科学十大进展(Chip10 Science)

2021

国家博新人才

2023

上海市高层次人才

2021

上海市超级博士后

2019

Nature最佳会议论文奖

2021

世界人工智能大会青年优秀论文提名奖(全球10人)

2023

纳米光电材料与半导体器件科学家探索奖

2024

山东省高层次人才

2024

山东省优青

2024

山东省青年科技人才托举工程