教授
博士生导师
硕士生导师
性别:男
毕业院校:浙江大学
学历:博士研究生毕业
学位:理学博士学位
在职信息:在职
所在单位:网络空间安全学院(研究院)
入职时间:2019-09-01
职务:教授
办公地点:淦昌苑D座319
访问量:
最后更新时间:..
-
[1]
李国栋.
ABS+ Polar Codes: Exploiting More Linear Transforms on Adjacent Bits.
2023.
-
[2]
李国栋.
ABS+ Polar Codes: Exploiting More Linear Transforms on Adjacent Bits.
《IEEE TRANSACTIONS ON INFORMATION THEORY》,
70,
2024.
-
[3]
李国栋.
MSR codes with linear field size and smallest sub-packetization for any number of helper nodes.
《IEEE TRANSACTIONS ON INFORMATION THEORY》,
2024.
-
[4]
李国栋.
MSR Codes with Linear Field Size and Smallest Sub-Packetization for Any Number of Helper Nodes.
2024.
-
[5]
张梓豪.
Constructing (h,k+1) Cooperative MSR Codes with Sub-Packetization (h+1)2?n/2?.
2024.
-
[6]
王东.
Optimal (2, δ) Locally Repairable Codes via Punctured Simplex Codes.
2023.
-
[7]
徐颜.
New classes of affine-invariant codes sandwiched between Reed–Muller codes.
FINITE FIELDS AND THEIR APPLICATIONS,
92,
2023.
-
[8]
李国栋.
All the Codeword Symbols in Polar Codes Have the Same SER Under the SC Decoder.
IEEE Transactions on Communications,
71,
3783,
2023.
-
[9]
王宁宁.
Constructing MSR Codes With Subpacketization 2n/3 for k + 1 Helper Nodes.
《IEEE TRANSACTIONS ON INFORMATION THEORY》,
69,
2023.
-
[10]
李国栋.
Adjacent-Bits-Swapped Polar Codes: A New Code Construction to Speed up Polarization.
《IEEE TRANSACTIONS ON INFORMATION THEORY》,
69,
2022.
-
[11]
徐颜.
Extended Cyclic Codes Sandwiched Between Reed–Muller Codes.
《IEEE TRANSACTIONS ON INFORMATION THEORY》,
69,
2023.
-
[12]
油思文.
Unextendible product bases from tile structures in bipartite systems.
《Journal of Physics A: Mathematical and Theoretical》,
2023.
-
[13]
李国栋.
Constructing MSR codes with subpacketization 2n/3for k + 1 helper nodes.
IEEE International Symposium on Information Theory - Proceedings,
2022.
-
[14]
李国栋.
Adjacent-Bits-Swapped Polar codes: A new code construction to speed up polarization.
IEEE International Symposium on Information Theory - Proceedings,
2022.
-
[15]
汲长江.
Extended Cyclic Codes Sandwiched between Reed-Muller Codes.
2021.
-
[16]
胡思煌 and Gabriele Nebe.
Low dimensional strongly perfect lattices IV: The dual strongly perfect lattices of dimension 16.
Journal of Number Theory,
208,
262,
2020.
-
[17]
Gabriele Nebe and 胡思煌.
Strongly perfect lattices sandwiched between Barnes-Wall lattices.
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES,
2020.
-
[18]
A Bound on the Shannon Capacity via a Linear Programming Variation (with I. Tamo and O. Shayevitz), SIAM J. Discrete Math. 32 (2018), 2229-2241.
-
[19]
On the VC-Dimension of Binary Codes (with N. Weinberger and O. Shayevitz), SIAM J. Discrete Math. 32 (2018), 2161-2171.
-
[20]
Combinatorial Alphabet-Dependent Bounds for LRCs (with A. Agarwal, A. Barg, A. Mazumdar and I. Tamo), IEEE Trans. Inform. Theory, 64 (2018), 3481-3492.
-
版权所有 ©山东大学 地址:中国山东省济南市山大南路27号 邮编:250100
查号台:(86)-0531-88395114
值班电话:(86)-0531-88364731 建设维护:山东大学信息化工作办公室
-
手机版
登录 | 山东大学