刘国良Guoliang Liu

(教授)

 硕士生导师
教师姓名:刘国良
教师英文名称:Guoliang Liu
教师拼音名称:Liu Guoliang
入职时间:2014-09-06
所在单位:控制科学与工程学院
职务:自动化系副主任
学历:研究生(博士)毕业
办公地点:千佛山校区创新大厦
性别:男
联系方式:liuguoliang@sdu.edu.cn
学位:博士生
职称:教授
在职信息:在职
主要任职:自动化系副主任
其他任职:山东省自动化学会副秘书长
毕业院校:德国哥廷根大学
学科:控制理论与控制工程

教师博客

当前位置: 中文主页 >> 教师博客

祝贺团队陈惠力同学论文被SCI期刊International Journal of Intelligent System录用(影响因子:8.709)

发布时间:2021-11-01 点击次数:


论文信息:Huili Chen, Guoliang Liu, Guohui Tian, Jianhua Zhang, Ze Ji, Safe Distance Prediction for Braking Control of Bridge Cranes Considering Anti-Swing, International Journal of Intelligent System, Accepted.


摘要:

The crane is an important machine for lifting and moving heavy objects in human coexistence dynamic environments. The suddenly appeared workers, vehicles and robots can affect the safety of the cranes. To avoid possible collisions, the cranes must have prediction ability to know how dangerous the situation is. In this paper, we address the safety issues of the bridge cranes based on its physical state and control model. Due to the swing of the payload, safe braking distance is not a constant value. Therefore, we here propose a model prediction control (MPC) based anti-swing method for a non-zero initial velocity state, and then an offline learning mechanism is introduced to learn a statistical model between the velocity of the crane and the safe braking distance. In this way, we can predict how far the crane requires to safely stop without swing based on its current velocity, which is the safe distance prediction to evaluate the dangerous level of the dynamic obstacle. The experiments using the simulated and real cranes demonstrate that the proposed safe distance prediction method is effective for safe braking control of the bridge cranes




基金资助:国家重点研发计划“智能机器人”重点专项课题,高速高精度智能天车物料调度安全作业系统,课题号:2018YFB1306504,执行年限:2019年06月-2022年05月