个人简介
侯庆振,山东大学国家健康医疗大数据研究院生物信息大数据中心主任,山东大学硕士生导师,山东产业技术研究院博士生导师,山东大学公共卫生学院生物统计学系副研究员,山东大学青年学者未来计划,中国生物工程学会计算生物学与生物信息学专委会委员,担任 Briefings in Bioinformatics,Bioinformatics, British Journal of Health Psychology 等多个杂志审稿人。主持国家自然科学基金面上项目,国家自然科学基金重点项目课题,国家重点研发子课题等省部级课题多项。
研究方向和领域:
语言大模型;单细胞/空间转录组分析;机器学习/深度学习方法医学应用;蛋白质功能与结构预测;生物信息学。研究方向包括发展生物语言大模型,进行疾病分析和抗体设计;整合外显子基因组学,免疫组学和蛋白组学进行多组学分析,探索疾病的分子机制;聚焦空间/单细胞转录组测序数据分析,寻找空间及细胞间异质性和差异表达基因等。
近五年第一或通讯代表性著作:
1. Hou, Q., Rooman, M., & Pucci, F. (2023). Enzyme stability-activity trade-off: new insights from protein stability weaknesses and evolutionary conservation. Journal of Chemical Theory and Computation.[中科院1区,TOP期刊]
2.Wang, C., Yuan, C., Wang, Y., Chen, R., Shi, Y., Patti, G., & Hou, Q. (2023). MPI-VGAE: protein-metabolite enzymatic reaction link learning by variational graph autoencoders. Briefings in Bioinformatics . [数学与计算生物学1区,影响因子13.994]
3. Meng, F., Zhou, N., Hu, G., Liu, R., Zhang, Y., Jing, M., & Hou, Q. (2024). A Comprehensive Overview of Recent Advances in Generative Models for Antibodies. Computational and Structural Biotechnology Journal. [生物学2区]
4. Hou, Q., Waury, K., Gogishvil,D., & Feenstra, A., (2022). Ten quick tips for sequence-based prediction of protein properties using machine learning. PLOS Computational Biology, PMID: 36454728. [数学与计算生物学1区,TOP期刊]
5. Hou, Q., Stringer, B., Waury, K., Capel, H., Haydarlou, R., Xue, F., Abeln, S., Heringa, J., & Feenstra, A., (2021). SeRenDIP-CE: Sequence-based Interface Prediction for Conformational Epitopes. Bioinformatics, btab321. [数学与计算生物学1区,TOP期刊]
6. Hou, Q., Pucci, F., Ancien, F., Kwasigroch, J. M., Bourgeas, R., & Rooman, M. (2021). SWOTein: A structure-based approach to predict stability Strengths and Weaknesses of prOTEINs. Bioinformatics, btab034.[数学与计算生物学1区,TOP期刊]
7. Hou, Q., Kwasigroch, J. M., Rooman, M., & Pucci, F. (2020). SOLart: a structure-based method to predict protein solubility and aggregation.Bioinformatics,36(5), 1445-1452.[数学与计算生物学1区,TOP期刊]
8. Hou, Q., De Geest, P. F., Griffioen, C. J., Abeln, S., Heringa, J., & Feenstra, K. A. (2019). SeRenDIP: SEquential REmasteriNg to DerIve profiles for fast and accurate predictions of PPI interface positions. Bioinformatics, 35(22), 4794-4796.[数学与计算生物学1区,TOP期刊]
9. Hou, Q., De Geest, P. F., Vranken, W. F., Heringa, J., & Feenstra, K. A. (2017). Seeing the trees through the forest: sequence-based homo-and heteromeric protein-protein interaction sites prediction using random forest. Bioinformatics, 33(10), 1479-1487.[数学与计算生物学1区,TOP期刊]
10. Hou, Q., Pucci, F., Pan, F., Xue, F., Rooman, M., & Feng, Q. (2022). Using metagenomic data to boost protein structure prediction and discovery. Computational and Structural Biotechnology Journal.[生物学2区]
11. Pan, F., Zhao, H., Nicholas, S., Maitland, E., Liu, R., & Hou, Q. (2021). Parents’ Decisions to Vaccinate Children against COVID-19: A Scoping Review. Vaccines, 9(12), 1476. [医学2区]
12. Yang, Y., Wei, Z., Cia, G., Song, X., Pucci, F., Rooman, M., ... & Hou, Q. (2024)MHCII-peptide presentation: an assessment of the state-of-the-art prediction methods. Frontiers in immunology, 15, 1293706. [医学2区]
教育经历
[1] 2012.1-2016.12
阿姆斯特丹自由大学
|
生物信息学
|
博士生
导师:Prof. Jaap Heringa; K. Anton Feenstra
[2] 2009.9-2011.6
武汉大学
|
发育生物学
|
硕士生
导师:赵洁教授
工作经历
[1] 2020.03-至今
山东大学
|
公共卫生学院(健康大数据研究院)
|
副研究员
[2] 2017.01-2019.12
比利时布鲁塞尔自由大学
|
结构生物信息学
|
博士后
|
导师: Prof. Marianne Rooman