刘超 (教授)

教授 博士生导师 硕士生导师

性别:男

毕业院校:香港科技大学

学位:博士

在职信息:在职

所在单位:集成电路学院

入职时间:2019-04-26

学科:微电子学与固体电子学

办公地点:山东大学软件园校区3-B栋302室

   
当前位置: 中文主页 >> 科学研究 >> 论文发表

Realization of specific localized surface plasmon resonance in Au-modified Ni nanoplasmonics for efficient detection

点击次数:

发表刊物:Applied Surface Science

关键字:Bimetallic NPs, Specific LSPR absorption peak, Plasmonic enhancement, Polar GaN MW array

摘要:Monometallic nanostructures have gained tremendous research attentions owing to the ability of supporting surface plasmons and improving devices performance. However, the relatively inflexible localized surface plasmon resonance (LSPR) absorption peaks restrict the further development of monometallic plasmonics and relevant applications. Herein, the bimetallic Au-Ni nanoparticles (NPs) with an ∼ 325 nm LSPR absorption peak were fabricated and decorated on polar GaN microwire (MW) array PDs via thin film thermal annealing approach. Compared with monometallic Au and Ni NPs, the bimetallic Au-Ni NPs can not only modulate LSPR absorption peak but also enhance absorptivity. Moreover, the bimetallic NPs/GaN MW array PDs demonstrated the maximum increase in responsivity than bare GaN under the resonance wavelength of 325 nm. The improvement in bimetallic NPs devices is correlated with the stronger light absorption, scattering and hot electron transfer at the GaN interface. This work presents a simply valid method for preparing the bimetallic Au-Ni NPs with tunable LSPR absorption peak, which can be helpful for realizing the energy-efficient optoelectronic device applications in most functional fields.

全部作者:Fei Chen,Chao Liu,Qing Liu,Kai Chen,Can Zou,Zixuan Zhao,Yu Zhu,Xingfu Wang

第一作者:Congcong Deng

论文类型:期刊论文

通讯作者:Fangliang Gao,Shuti Li

卷号:586

页面范围:152288

是否译文:

发表时间:2022-02-01

收录刊物:SCI

发表时间:2022-02-01

  • 附件:1-s2.0-S0169433221033134-main.pdf  下载[]

  • 上一条: Alleviated built-in electric field in the active region of AlGaN deep-ultraviolet light emitting diodes with locally embedded p-i-n junctions

    下一条: Design space of GaN Vertical Trench Junction Barrier Schottky Diodes: Comprehensive Study and Analytical Modeling