个人简历

学习经历

1978.10-1982.07 山东大学物理系,获学士学位;

1987.09-1990.07 吉林大学物理系理论物理专业,获硕士学位;

1991.09-1994.07 吉林大学物理系理论物理专业,获博士学位。

 

工作经历

工作经历

1982.08-1985.12 中国科学院光电技术研究所,研究实习员;

1986.01-1987.08, 1990.09-1991.08 烟台大学物理系,助教;

1994.09-2007.09 山东师范大学物理系,教授、博士生导师;

2007.09- 山东大学物理学院,教授、博士生导师。

 

1994年晋升为教授,2009年晋升教授二级岗,2013年起为泰山学者特聘教授,2018年起为山东大学特聘教授。

 

 

工作介绍

        本人及所在的山东大学物理学院量子信息研究团队主要从事量子信息的物理基础研究,过去几年,我们在量子物理基础理论、量子信息、数学物理等多个研究领域完成了一些具有国际影响的工作。代表性成果:

1)提出了开放系统的几何相理论(PRL93,080405,2004),为几何相在开放系统的应用奠定了基础,所给公式已成为计算混态几何相的基本依据被广泛应用于各类物理体系。该理论所确定的几何相位被加拿大Laflamme组的实验证实(PRL105,240406,2010);

2)证明了通常哈密顿量H(t)的本征值、本征函数描述的量化绝热条件的非充分性(PRL95,110407,2005),并在后续的工作中进一步确立了其性质和应用范围(PRL98,150402,2007;PRL104,120401,2010) 该绝热条件非充分性的理论结果被中科大杜江峰组的实验证实(PRL101,060403,2008)

3)提出了非绝热Holonomy量子计算理论,并应用于开放系统普适量子门的设计(NJP14,103035,2012;PRL109,170501,2012PRA89,042302,2014)。该理论旨在克服量子系统的控制误差和退相干问题——这是实现量子计算所面临的主要挑战。该理论已被清华大学龙桂鲁组(PRL110,190501,2013)、苏黎世理工与加州理工的联合组(Nature496,482,2013)等的数十个实验证实;

4) 提出了关于准对角密度矩阵相干性度量的可加性公理假定,并证明了基于相对熵测量的相干性完全冻结定理。关于该工作的两篇论文都被推荐为Rapid Communications发表在PRA(PRA93,060303(R),2016PRA94,060302(R),2016).

5) 提出了未知量子态相干度的最优下界理论公式,并给出了数值计算方案(PRL 120, 170501,2018)。由于真实量子系统的状态往往未知,无法直接计算系统的相干性,为解决相干性度量理论面向实际应用的这一难题,我们提出了利用不完备信息估算未量子态相干性的方法,该方法适用于各种相干性度量,可基于任意的实验数据确定相干性度量的最优下界。

 

    除上述代表性成果外,我们还完成了一些其他有影响的工作,如,辫子群的不可约表示理论已被写入多本专著和研究生教材,并获山东省科技进步一等奖。近几年,6篇论文发表在PRL上,50余篇论文发表在PR系列。研究成果先后获得山东省科技进步一等奖、教育部自然科学一等奖、国家自然科学二等奖。


 


 

 

代表性论文

作为第一和通信作者6PRL3PRA Rapid Communication42PR系列。


 

 

1. K. Z. Li , P. Z. Zhao , and D. M. Tong

Approach to realizing nonadiabatic geometric gates with prescribed evolution paths

Physical Review Research 2, 023295 (2020)

2.P. Z. Zhao, K. Z. Li , G. F. Xu, and D. M. Tong

General approach for constructing Hamiltonians for nonadiabatic holonomic quantum computation

Physical Review A 101, 062306 (2020)

3. P. Z. Zhao, G. F. Xu and D. M. Tong

Nonadiabatic holonomic multiqubit controlled gates

Physical Review A, 99, 052309 (2019)

4. C. L. Liu, Xiao-Dong Yu and D. M. Tong

Flag additivity in quantum resource theories

Physical Review A, 99, 042322 (2019)

5. Zhenxing Zhang, P Z Zhao, Tenghui Wang, Liang Xiang, Zhilong Jia, Peng Duan, D M Tong, Yi Yin and Guoping Guo

Single-shot realization of nonadiabatic holonomic gates with a superconducting Xmon qutrit

New J. Phys. 21, 073024 (2019)

6. G. F. Xu, E. Sjoqvist and D. M. Tong

Path-shortening realizations of nonadiabatic holonomic gates

Physical Review A, 98, 052315 (2018)

7. P.Z. Zhao, X Wu, T. H. Xing, G. F. Xu and D. M. Tong

Nonadiabatic holonomic quantum computation with Rydberg superatoms,

Physical Review A, 98, 032313 (2018)

8.Da-Jian Zhang, C. L. Liu, Xiao-Dong Yu and D. M. Tong

Estimating Coherence Measures from Limited

Physical Review Letters, 120, 170501 (2018)

9. C. L. Liu, Yan-Qing Guo, D. M. Tong

Enhancing coherence of a state by stochastic strictly incoherent operations

Phys. Rev. A 96, 062325 (2017)

10. P. Z. Zhao, Xiao-Dan Cui, G. F. Xu, Erik Sjöqvist, D. M. Tong

Rydberg-atom-based scheme of nonadiabatic geometric quantum computation

Phys. Rev. A 96, 052316 (2017)

11. P. Z. Zhao, G. F. Xu, Q. M. Ding, Erik Sjöqvist, D. M. Tong

Single-shot realization of nonadiabatic holonomic quantum gates in decoherence-free subspaces

Phys. Rev. A 95, 062310 (2017)

12. G. F. Xu, P. Z. Zhao, D. M. Tong, Erik Sjöqvist

Robust paths to realize nonadiabatic holonomic gates

Phys. Rev. A 95, 052349 (2017)

13. G. F. Xu, P. Z. Zhao, T. H. Xing, Erik Sj¨oqvist, D. M. Tong,

Composite nonadiabatic holonomic quantum computation

Phys. Rev. A 95, 032311 (2017)

14. Da-Jian Zhang, Xiao-Dong Yu, Hua-Lin Huang, D. M. Tong

Universal freezing of asymmetry

Phys. Rev. A 95, 022323 (2017)

15. Xiao-Dong Yu, Da-Jian Zhang, G. F. Xu, D. M. Tong

Alternative framework for quantifying coherence

Phys. Rev. A 94 (2016) 060302 (Rapid Communications).

16. Pei-Zi Zhao, G F Xu, D M Tong

Nonadiabatic geometric quantum computation in decoherence-free subspaces based on unconventional geometric phases

Phys. Rev. A 94 (2016) 062327.

17. Da-Jian Zhang, Xiao-Dong Yu, Hua-Lin Huang, D. M. Tong

General approach to find steady-state manifolds in Markovian and non-Markovian systems

Phys. Rev. A 94 (2016) 052132.

18. Xiao-Dong Yu, Da-Jian Zhang, C. L. Liu, D. M. Tong

Measure-independent freezing of quantum coherence

Phys. Rev. A 93 (2016) 060303 (Rapid Communications).

19. Da-Jian Zhang, Hua-Lin Huang, D. M. Tong1

Non-Markovian quantum dissipative processes with the same positive features as Markovian dissipative processes

Phys. Rev. A 93 (2016) 012117.

20. G. F. Xu, C. L. Liu, P. Z. Zhao, D. M. Tong

Nonadiabatic holonomic gates realized by a single-shot implementation

Phys. Rev. A 92 (2015) 052302.

21. J. Zhang, Thi Ha Kyaw, D. M. Tong, Erik Sjöqvist, L. C. Kwek

Fast non-Abelian geometric gates via transitionless quantum driving

Sci. Rep. 5, 18414 (2015).

22. Xiao-Dong Yu, Yan-Qing Guo, D M Tong

A proof of the Kochen–Specker theorem can always be converted to a state-independent noncontextuality inequality

New J. Phys. 17 (2015) 093001.

23. Da-Jian Zhang, Xiao-Dong Yu, D M Tong

Theorem on the existence of a non-zero energy gap in adiabatic quantum computation

Phys. Rev. A 90(2014)042321.

24. Long-Jiang Liu, D M Tong

Completely positive maps within the framework of direct-sum decomposition of state space

Phys. Rev. A 90(2014)012305.

25. X D Yu, D M Tong

Coexistence of Kochen-Specker inequalities and noncontextuality inequalities

Phys. Rev. A 89(2014)010101 (Rapid Communications).

26. J. Zhang, L C Kwek, E Sjoqvist, D M Tong, P Zanardi

Quantum computation in noiseless subsystems with fast non-Abelian holonomies

Phys. Rev. A 89(2014)042302.

27. G F Xu, J Zhang, D M Tong, E Sjoqvist, L C Kwek,

Nonadiabatic holonomic quantum computation in decoherence-free subspaces

Phys. Rev. Lett, 109(2012)170501.

28. E SjoqvistD M Tong, L M Andersson, B Hessmo, M Johansson, K Singh

Non-adiabatic holonomic quantum computation

New J phys., 14(2012)103035

29. M Johansson, E Sjoqvist, L M Andersson, M Ericsson, B Hessmo, K Singh, D M Tong

Robustness of nonadiabatic holonomic gates

Phys. Rev. A 86(2012)062322

30. D M Tong,

Reply to comments on quantitative conditions is necessary in guaranteeing the validity of the adiabatic approximation

Phys. Rev. Lett 106 (2011)138903.

31. X J Fan, Z B Liu, Y Liang, K N Jia, D M Tong,

Phase control of probe response in a Doppler-broadened N-type four-level system

Phys. Rev. A 83(2011)043805.

32. D M Tong

Quantitative conditions is necessary in guaranteeing the validity of the adiabatic approximation

Phys. Rev. Lett., 104(2010) 12:120401

33. C W Niu, G F Xu, L J Liu, L Kang, D M Tong, L C Kwek,

Separable states and geometric phases of an interacting two-spin system

Phys. Rev. A, 81(2010)1:012116

34. S Yin, D M Tong

Geometric phase of a quantum dot system in nonunitary evolution

Phys. Rev. A 79 (2009)4: 044303

35. C S Guo, L L Lu , G X Wei, J L He, D M Tong

Diffractive imaging based on a multipinhole plate

Optics Letters 34(2009)12:1813

36. D M Tong, K. Singh, L C Kwek, C H Oh

Sufficiency Criterion for the Validity of the Adiabatic Approximation

Phys. Rev. Lett., 98(2007)15:150402

37. X X Yi, D M Tong, L C Wang, L C Kwek, and C. H. Oh

Geometric phase in open systems: Beyond the Markov approximation and weak-coupling limit

Phys. Rev. A, 73(2006)052103.

38. D M Tong, K. Singh, L C Kwek, C H Oh

Quantitative conditions do not guarantee the validity of the adiabatic approximation

Phys. Rev. Lett., 95(2005)11:110407

39. D M Tong, E. Sjoqvist, S. Filipp, L C Kwek, C H Oh

Kinematic approach to off-diagonal geometric phases of nondegenerate and degenerate mixed

Phys. Rev. A 71(2005)032106

40. D M Tong, E. Sjoqvist, L C Kwek, C H Oh

Kinematic approach to geometric phase of mixed states under nonunitary evolutions

Phys. Rev. Lett., 93(2004)8:080405

41. D M Tong, L C Kwek, C H Oh, J L Chen, and L Ma

Operator-sum representation of time-dependent density operators

Phys. Rev. A, 69(2004)054102

42. D M Tong, J L Chen, L C Kwek, C. H. Lai, and C H Oh

General formalism of Hamiltonians for realizing a prescribed evolution of a qubit

Phys. Rev. A, 68(2003)062307

43. D M Tong, E. Sjoqvist, L C Kwek, C H Oh and M Ericsson

Relation between the geometric phases of the entangled biparticle system and their subsystems

Phys. Rev. A, 68(2003)022106

44. K Sigh, D M Tong, K Basu, J L Chen and J F Du

Geometric phase for non-degenerate and degenerate mixed states

Phys. Rev. A, 67(2003)3:032106

45. S X Liu, G L Long, D M Tong and Feng Li

General scheme for superdense coding between multiparties

Phys. Rev. A, 65(2002)02

 

仝殿民

教授 博士生导师 硕士生导师

性别:男

出生日期: 1962-11-17

毕业院校: 吉林大学

学历: 研究生(博士)毕业

学位: 理学博士学位

在职信息: 在职

所在单位: 物理学院

入职时间: 2007-09-26

办公地点: 山东大学中心校区知新楼C区1018室

联系方式: 邮箱: tdm@sdu.edu.cn 电话:13688638430 微信号:tongdianmin

电子邮箱: tdm@sdu.edu.cn

邮编 : 250100

通讯/办公地址 : 济南市山大南路27号  山东大学中心校区知新楼C区1018室

移动电话 : 13688638430

邮箱 : tdm@sdu.edu.cn

版权所有   ©山东大学 地址:中国山东省济南市山大南路27号 邮编:250100 
查号台:(86)-0531-88395114
值班电话:(86)-0531-88364731 建设维护:山东大学信息化工作办公室   
访问量: 手机版 English 登录 山东大学

最后更新时间: ..