个人信息Personal Information
教授 博士生导师 硕士生导师
性别:男
毕业院校:山东大学
学历:研究生(博士)毕业
学位:理学博士学位
在职信息:在职
所在单位:数据科学研究院
入职时间:2019-08-30
学科:基础数学
办公地点:明德楼C701
联系方式:(0531) 883 69786
-
Automorphic forms
Fall 2024, Jinan
Time and Place:
Tuesday 14:00-17:00, Mingde Building C704.
Instructors:
Bingrong Huang & Ke Wang
Prerequisites:
Basic Analytic Number Theory and Modular Forms.
Syllabus:
We plan to give lectures on automorphic forms in this semester. We will use the following book:
Bergeron, Nicolas. The spectrum of hyperbolic surfaces. Universitext. Springer, Cham; EDP Sciences, Les Ulis, 2016, xiii+370 pp.
See also:
Iwaniec, Henryk. Spectral methods of automorphic forms. Second edition. Graduate Studies in Mathematics, 53. American Mathematical Society, Providence, RI; Revista Matemática Iberoamericana, Madrid, 2002. xii+220 pp.
Schedule:
Week Date Contents Lecturer 1 Sep. 03 No class 2 Sep. 10 Introduction H 3 Sep. 17 No class (中秋节) 4 Sep. 24 Arithmetic Hyperbolic Surfaces W 5 Oct. 01 No class (国庆节) 6 Oct. 08 Arithmetic Hyperbolic Surfaces W 7 Oct. 15 Spectral Theorem H 8 Oct. 22 No class(调课) 9 Oct. 29 Maass forms H 10 Nov. 05 Selberg Trace Formula W 11 Nov. 12 Selberg Trace Formula W 12 Nov. 19 JL Correspondence H 13 Nov. 26 JL Correspondence H 14 Dec. 03 L-functions W 15 Dec. 10 L-functions W 16 Dec. 17 QUE H 17 Dec. 24 QUE H Contact: Bingrong Huang & Ke Wang
Course homepage: https://faculty.sdu.edu.cn/brhuang/zh_CN/zdylm/1804959/list/index.htm
-
L-functions
Spring 2024, Jinan
Time and Place:
Tuesday 14:00-16:00, 逸夫信息楼 A403.
Instructors:
Bingrong Huang and Yongxiao Lin
Prerequisites:
Basic Analytic Number Theory and Automorphic Forms.
Syllabus:
This is a reading course. We plan to read the following chapters and papers in this semester.
[BFKMMS] Blomer, Valentin; Fouvry, Étienne; Kowalski, Emmanuel; Michel, Philippe; Milićević, Djordje; Sawin, Will. The second moment theory of families of L-functions—the case of twisted Hecke L-functions. Mem. Amer. Math. Soc. 282 (2023), no. 1394, v+148 pp. MR4539366
[FKMS] Fouvry, Étienne; Kowalski, Emmanuel; Michel, Philippe; Sawin, Will. Lectures on applied ℓ-adic cohomology. Analytic methods in arithmetic geometry, 113–195, Contemp. Math., 740, Centre Rech. Math. Proc., Amer. Math. Soc., [Providence], RI, [2019], ©2019. MR4033731
[BFKMM] Blomer, Valentin; Fouvry, Étienne; Kowalski, Emmanuel; Michel, Philippe; Milićević, Djordje. On moments of twisted L-functions. Amer. J. Math. 139 (2017), no. 3, 707–768.
[BFKMM] Blomer, V.; Fuvri, É.; Kovalʹski, È.; Mishelʹ, F.; Milichevich, Dzh. Some applications of smooth bilinear forms with Kloosterman sums. (Russian) English version published in Proc. Steklov Inst. Math. 296 (2017), no. 1, 18–29. Tr. Mat. Inst. Steklova 296 (2017), Analiticheskaya i Kombinatornaya Teoriya Chisel, 24–35.
Schedule:
Date Speaker Title References February 27 Yongxiao Lin Momemts of L-functions [BFKMMS] Chap. 1 March 05 Yongxiao Lin Momemts of L-functions, II [BFKMMS] Chap. 1 March 12 Chenyang Lu L-functions [BFKMMS] Chap. 2 March 19 Chenyang Lu L-functions, II [BFKMMS] Chap. 2 March 26 Bin Guan Local Langlands conjecture April 02 Liangxun Li The twisted moments [BFKMMS] Chap. 4 April 09 Liangxun Li The twisted moments, II [BFKMMS] Chap. 5 April 16 Liangxun Li The +ab shift [FKMS] Sec. 16 April 23 Zhehao He Non-vanishing [BFKMMS] Chap. 6 April 30 Zhehao He Non-vanishing, II [BFKMMS] Chap. 6 May 07 Jiangpeng Li Extreme values [BFKMMS] Chap. 7 May 14 Jiangpeng Li Extreme values, II [BFKMMS] Chap. 7 May 21 Jinghai Liu The analytic rank [BFKMMS] Chap. 8 May 28 Haozhe Gou Algebraic exponential sums [BFKMMS] Chap. 3 June 04 Haozhe Gou Algebraic exponential sums [BFKMMS] Chap. 3 June 11 Zhenyu Zhang Modular symbols [BFKMMS] Chap. 9 June 18 Bingrong Huang Fourth moment of GL(1) L-functions [BFKMM] Contact:
Bingrong Huang (Email: brhuang (AT) sdu.edu.cn; Office: Mingde Building C701)
Yongxiao Lin (Email: yongxiao.lin (AT) sdu.edu.cn; Office: Mingde Building C705)
-
模形式讨论班
2023年秋季学期
教材:
[Bump]. Bump, Daniel. Automorphic forms and representations. Cambridge Studies in Advanced Mathematics, 55. Cambridge University Press, Cambridge, 1997. xiv+574 pp. 第一章
[Sarnak]. Sarnak, Peter. Some applications of modular forms. Cambridge Tracts in Mathematics, 99. Cambridge University Press, Cambridge, 1990. x+111 pp.
参考书:
[Iwaniec]. Iwaniec, Henryk. Topics in classical automorphic forms. Graduate Studies in Mathematics, 17. American Mathematical Society, Providence, RI, 1997. xii+259 pp.
时间地点:
中心校区知新楼B座119,每周五晚上 19:00-21:50
讲课安排:
时间 讲课人 讲课内容 参考 2023-09-08 黄炳荣 模形式简介 2023-09-15 王可 Dirichlet L-functions [Bump, Sect. 1.1] 2023-09-22 李良汛 The modular group [Bump, Sect. 1.2] 2023-09-29 中秋节 放假 2023-10-06 国庆节 放假 2023-10-13 刘子铭 Modular forms for SL(2,Z) [Bump, Sect. 1.3] 2023-10-20 王海旭 Hecke operators [Bump, Sect. 1.4] 2023-10-27 吕章印 Twisting [Bump, Sect. 1.5] 2023-11-03 卢浩阳 The Rankin-Selberg method [Bump, Sect. 1.6] 2023-11-10 张璕 Hecke characters and Hilbert modular forms [Bump, Sect. 1.7] 2023-11-17 刘天 Artin L-functions and Langlands functoriality [Bump, Sect. 1.8] 2023-11-24 宋卓奇 Maass forms [Bump, Sect. 1.9] 2023-12-01 孙伟涛 Base change [Bump, Sect. 1.10] 2023-12-08 李晓承 Poincare series [Sarnak, Sect. 1.3 & 1.5] 2023-12-15 郭诚亮 Kloosterman sums [Sarnak, App. 1.1-1.2] 2023-12-22 张振宇 Ramanujan bounds [Sarnak, Chap. 4] Contact: Bingrong Huang (Email: brhuang@sdu.edu.cn, Office : Mingde Building C701).
Course homepage: https://faculty.sdu.edu.cn/brhuang/zh_CN/zdylm/1626738/list/index.htm
-
L-functions
Spring 2023, Jinan
Time and Place:
Wednesday 10:10-12:00, Math Building 204.
Prerequisites:
Basic Analytic Number Theory and Automorphic Forms.
Syllabus:
This is a reading course. We plan to read the following chapters and papers in this semester.
[Iw02] Iwaniec, H. Spectral methods of automorphic forms. Second edition. Graduate Studies in Mathematics, 53. American Mathematical Society, Providence, RI; Revista Matemática Iberoamericana, Madrid, 2002. xii+220 pp. Chapters 11-13.
[CI00] Conrey, J. B.; Iwaniec, H. The cubic moment of central values of automorphic L-functions. Ann. of Math. (2) 151 (2000), no. 3, 1175–1216.
[PY20] Petrow, I.; Young, Matthew P. The Weyl bound for Dirichlet L-functions of cube-free conductor. Ann. of Math. (2) 192 (2020), no. 2, 437–486.
Schedule:
Date Speaker Title References February 15 Liangxun Li The distribution of eigenvalues, I [Iw02, Chap. 11] February 22 Jinzhi Feng The distribution of eigenvalues, II [Iw02, Chap. 11] March 1 Meijie Lu Hyperbolic lattice point problems [Iw02, Chap. 12] March 8 Shu Luo Spectral bounds for cusp forms [Iw02, Chap. 13] March 15 Bingrong Huang Introduction [CI00] March 22 Liangxun Li Automorphic forms and L-functions [CI00] §2-7 March 29 Liangxun Li Estimation of the c ubic moments [CI00] §9-10 April 5 Qingming Festival April 12 Liangxun Li Separation of variables [CI00] §8 April 19 Liangxun Li Bilinear forms [CI00] §11-12 April 26 Liangxun Li Estimation of the character sums [CI00] §13-14 May 03 Labor Day May 10 Shu Luo Sect. 1 [PY20] May 17 Jinzhi Feng Sect. 2-4 [PY20] May 24 Zhenyu Zhang Sect. 5-8 [PY20] May 31 Shenghao Hua Sect. 9 [PY20] June 07 Shenghao Hua [PY20] June 14 Meijie Lu Contact: Bingrong Huang (Email: brhuang@sdu.edu.cn; Office: Mingde Building C701)
Course homepage: https://faculty.sdu.edu.cn/brhuang/zh_CN/zdylm/1592228/list/index.htm
-
A first course in sieve methods
Fall 2022 & Spring 2023, Jinan
Organizers:
Shenghao Hua, Bingrong Huang, Zhiwei Wang.
Time and Place:
Fall 2022: Thursday 14:00-16:00, Zhixin Building B1044.
Spring 2023: TBA
Prerequisites:
Elementary Number Theory.
Synopsis:
This is a reading seminar. We plan to read Friedlander and Iwaniec’s sieve method book Opera de cribro, and some applications of sieve methods and large sieve methods, such as Goldbach’s Conjecture, Twin Prime Conjecture, and so on. This is also a joint course with Professor Zhiwei Wang’s Advanced Analytic Number Theory course in Fall 2022.
Reference:
[Chen66]. Chen Jing-run. On the representation of a large even integer as the sum of a prime and the product of at most two primes. Kexue Tongbao 17 (1966), 385–386.
[FI10]. Friedlander, John; Iwaniec, Henryk. Opera de cribro. American Mathematical Society Colloquium Publications, 57. American Mathematical Society, Providence, RI, 2010.
[FI09]. Friedlander, John; Iwaniec, Henryk. What is … the parity phenomenon? Notices Amer. Math. Soc. 56 (2009), no. 7, 817–818.
[HR74].Halberstam, H.; Richert, H.-E. Sieve methods. London Mathematical Society Monographs, No. 4. Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1974.
[Maynard15]. Maynard, James. Small gaps between primes. Ann. of Math. (2) 181 (2015), no. 1, 383–413.
[Zhang14]. Zhang, Yitang. Bounded gaps between primes. Ann. of Math. (2) 179 (2014), no. 3, 1121–1174.
-
Automorphic forms
Fall 2022, Jinan
Time and Place:
Thursday 09:00-12:00, Zhixin Building B1044.
Prerequisites:
Basic Analytic Number Theory and Modular Forms.
Syllabus:
We plan to give lectures on automorphic forms in this semester. We will use the following book:
Iwaniec, Henryk. Spectral methods of automorphic forms. Second edition. Graduate Studies in Mathematics, 53. American Mathematical Society, Providence, RI; Revista Matemática Iberoamericana, Madrid, 2002. xii+220 pp.
Schedule:
Week Date Contents 1 Sep. 08 No class 2 Sep. 15 Introduction; The upper half plane and Group decompositions 3 Sep. 22 The Laplace operator and eigenfunctions 4 Sep. 29 The invariant integral operators and Green functions 5 Oct. 06 Fuchsian groups 6 Oct. 13 Kloosterman sums 7 Oct. 20 Automorphic forms 8 Oct. 27 The spectral theorem of discrete part 9 Nov. 03 The automorphic Green function 10 Nov. 10 Analytic continuation of the Eisenstein series 11 Nov. 17 The spectral theorem of continuous part 12 Nov. 24 Averages of Fourier coefficients 13 Dec. 01 Kuznetsov trace formula 14 Dec. 08 Selberg trace formula 15 Dec. 15 Selberg trace formula, II 16 Dec. 22 Weyl's law Contact: Bingrong Huang (Email: brhuang@sdu.edu.cn; Office: Mingde Building C701)
Course homepage: https://faculty.sdu.edu.cn/brhuang/zh_CN/zdylm/1477561/list/index.htm
-
模形式讨论班
教材:
[Serre]. Serre, J.-P. A course in arithmetic. Translated from the French. Graduate Texts in Mathematics, No. 7. Springer-Verlag, New York-Heidelberg, 1973. viii+115 pp.
[Bump]. Bump, Daniel. Automorphic forms and representations. Cambridge Studies in Advanced Mathematics, 55. Cambridge University Press, Cambridge, 1997. xiv+574 pp. 第一章
参考书:
[1]. Iwaniec, Henryk. Topics in classical automorphic forms. Graduate Studies in Mathematics, 17. American Mathematical Society, Providence, RI, 1997. xii+259 pp.
[2]. Diamond, Fred; Shurman, Jerry. A first course in modular forms. Graduate Texts in Mathematics, 228. Springer-Verlag, New York, 2005. xvi+436 pp.
[3]. Koblitz, Neal. Introduction to elliptic curves and modular forms. Second edition. Graduate Texts in Mathematics, 97. Springer-Verlag, New York, 1993. x+248 pp.
讲课安排:
时间 讲课人 讲课内容 参考 2022-09-09 黄炳荣 模形式简介 2022-09-16 朱俊辉 Finite Fields [Serre, Chap. I] 2022-09-23 徐国瑞 p-adic Fields [Serre, Chap. II] 2022-09-30 曹峻清 Hilbert Symbol [Serre, Chap. III] 2022-10-07 陈沛吾 Quadratic Forms over Q_p [Serre, Chap. IV] part 1 2022-10-14 陈沛吾 Quadratic Forms over Q [Serre, Chap. IV] part 2 2022-10-21 李良汛 Integral Quadratic Forms [Serre, Chap. V] 2022-10-28 郭诚亮 / 汤琰煜 PNT on APs [Serre, Chap. VI] 2022-11-04 汤琰煜 / 吕祚政 PNT on APs, cont. / Modular Forms I [Serre, Chap. VI] / [Serre, Chap. VII] 2022-11-11 魏子惟 Modular Forms II [Serre, Chap. VII] 2022-11-18 宋翔宇 Modular Forms III [Serre, Chap. VII] 2022-11-25 张振宇 Twisting [Bump, Sect. 1.5] 2022-12-02 李 响 Rankin-Selberg [Bump, Sect. 1.6] 2022-12-09 徐国瑞 Artin and Langlands [Bump, Sect. 1.8] 2022-12-16 黄炳荣 Maass Forms [Bump, Sect. 1.9] Contact: Bingrong Huang (Email: brhuang@sdu.edu.cn, Office : Mingde Building C701).
Course homepage: https://faculty.sdu.edu.cn/brhuang/zh_CN/zdylm/1477560/list/index.htm
-
Fundamentals in Number Theory
Spring 2022, Jinan
Schedule:
Tuesday 08:00-09:50 & Thursday 08:00-09:50.
Classroom:
Zhixin Building B124.
Prerequisites:
The first semester courses in real and complex variables, and the basic course in number theory (i.e. the first year course Basic Algebra and Geometry, see Part I of [FY]).
Syllabus:
The course is an introductory course in number theory. The topics include
1. The Euclidean algorithm, unique factorization, greatest common divisor, linear Diophantine equations, congruences, Chinese Remainder Theorem, Legendre symbol, quadratic reciprocity law, primitive roots and indices,
2. Arithmetic functions,
3. The order and average order of magnitude of arithmetic functions,
4. The distribution of primes and applications,
5. Dirichlet characters, Dirichlet's theorem on primes in arithmetic progressions,
6. Primitive characters, character sums, Polya–Vinogradov inequality,
7. Sums of squares,
8. Basic Algebraic Number Theory,
9. Diophantine approximation, continued fractions, and the transcendence of e.
If we still have time, then we may include
10. Modular forms and theta series
11. Equidistribution modulo one
Bibliography
Any introductory book on number theory will be useful. For example, see:
[L]. W.J. LeVeque, Fundamentals of Number Theory.
[P]. 潘承洞,《数论基础》.
[FY]. 冯克勤、余红兵,《整数与多项式》 第一部分.
Suggested reading:
[A]. T. Apostol, Introduction to Analytic Number Theory.
[MV]. H. Montgomery and R. Vaughan, Multiplicative Number Theory I. Classical Theory. [Chapters 4 & 9]
[IK]. H. Iwaniec and E. Kowalski, Analytic Number Theory. [Chapters 1-4]
Attendance of lectures is mandatory!
Homeworks:
This will be an important part of the course. 10% of the final grade will be determined from the homework scores, which will be obtained as the average grade of a certain number of assignments.
Homework 1 (due Thursday March 3): [L] §1.1 Problems 2 & 4; §6.3 Problems 2, 3 & 6; §6.2 Problems 4; §6.1 Problems 2 & 6.
Homework 2 (due Thursday March 10): [P] 第二章习题 4, 5, 6, 7, 11, 12
Homework 3 (due Thursday March 17): [L] §6.4 Problems 3(b) & 6; §6.10 Problem 5; §6.11 Problems 2, 3, 4, 5
Homework 4 (due Thursday March 24): [L] §6.6 Problems 4, 5, & 7; §6.7 Problems 1 & 5
Homework 5 (due Thursday April 7): [L] §6.9 Problems 4, 6, & 7; §6.11 Problem 13; [P] 第三章习题 13, 14, 19
Homework 6 (due Thursday April 21): [L] §3.4 Problems 2, 6, 7, 8, & 14; §4.3 Problems 7 & 8; §5.4 Problems 2 & 3
Homework 7 (due Thursday May 5): Homework_7.pdf
Homework 8 (due Thursday May 19): Homework_8.pdf
Homework 9 (due Thursday May 26): [L] §7.3 Problems 4 & 6; §7.5 Problems 1 & 3; §8.2 Problems 3, 6, 11 & 14. (Choose 4 of them.)
Homework 10 (due Thursday June 26): [L] §8.3 Problem 4; §8.4 Problem 4; §9.1 Problem 3; §9.2 Problem 3.
Lecture notes:
Lecture note 1.pdf Introduction 02.22 Lecture note 2.pdf arithmetic functions 02.24, 03.01, 03.03 Lecture note 3.pdf order of magnitude of AFs 03.08, 03.10, 03.15 Lecture note 4.pdf the distribution of primes 03.17, 03.22, 03.29, 03.31, 04.07 [Apostol, Sections 3.8 & 5.7-5.9] congruences and primitive roots 04.12 [LeVeque, Chapter 4] primitive roots and indices 04,14 [Montgomery--Vaughan, Chapter 4] Dirichlet characters 04.19, 04.21 [Iwaniec--Kowalski, Section 2.3] Dirichlet's theorem on primes in APs 04.26, 05.03 [Montgomery--Vaughan, Chapter 9] character sums 05.03, 05.05, 05.08 [LeVeque, Chapters 7-9] 05.12, ..., 06.09 Exercise classes: 03.24, 04.26, 05.26
Midterm exam: 04.19 or 04.21 ?? (Canceled, because of the outbreak)
Final exam: 06.20 -- 07.01
Contact: Bingrong Huang, brhuang@sdu.edu.cn, Office : Mingde Building C701
Teaching assistant: Liangxun Li, email: lxli@mail.sdu.edu.cn
Course homepage: https://faculty.sdu.edu.cn/brhuang/zh_CN/zdylm/1454369/list/index.htm
-
L-functions
Spring 2022, Jinan
Time and Place:
Tuesday 14:00-15:50, Mingde Building C704.
Prerequisites:
Basic Analytic Number Theory and Modular Forms.
Syllabus:
This is a reading course. We plan to read the following papers in this semester.
[S21]. Soundararajan, K. The distribution of values of zeta and L-functions. ArXiv preprint, arXiv:2112.03389, 2021.
[RS05]. Rudnick, Z.; Soundararajan, K. Lower bounds for moments of L-functions. Proc. Natl. Acad. Sci. USA 102 (2005), no. 19, 6837–6838.
[S09]. Soundararajan, K. Moments of the Riemann zeta function. Ann. of Math. (2) 170 (2009), no. 2, 981–993.
[S08]. Soundararajan, K. Extreme values of zeta and L-functions. Math. Ann. 342 (2008), no. 2, 467–486.
[RS15]. Radziwiłł, M.; Soundararajan, K. Moments and distribution of central L-values of quadratic twists of elliptic curves. Invent. Math. 202 (2015), no. 3, 1029–1068.
Schedule:
Date Speaker Title References February 22 Bingrong Huang Moments of L-functions (Lower bounds) [RS05] March 1 Shenghao Hua Values at the edge of the critical strip [S21] §1 March 8 Shenghao Hua Selberg's central limit theorem [S21] §2 March 15 Yuxuan Zhou Selberg's theorem in families of L-functions [S21] §3 March 22 Hui Wang Moments of L-functions [S21] §4 & [S09] March 29 Mingyue Fan Conjectures of moments [S21] §5 April 5 no talk (Qing Ming) April 12 Mingyue Fan Conjectures of moments [S21] §5 April 19 Tengyou Zhu Results on moments and FHK conjecture [S21] §6 April 26 Tengyou Zhu Results on moments and FHK conjecture [S21] §8 May 03 Enxun Huang Extreme values [S21] §7 May 10 Enxun Huang Extreme values [S08] May 17 Sizhe Xie [RS15] May 24 Sizhe Xie [RS15] May 31 Liangxun Li [RS15] June 07 Liangxun Li [RS15] June 14 Mingyue Fan [RS15] Contact: Bingrong Huang (Email: brhuang@sdu.edu.cn; Office: Mingde Building C701)
Course homepage: https://faculty.sdu.edu.cn/brhuang/zh_CN/zdylm/1454369/list/index.htm
-
Fundamentals in Number Theory
Spring 2020/21, Jinan
Schedule: Monday 10:10-12:00, Wednesday 10:10-12:00.
Classroom: Zhixin Building B119.
Prerequisites:
I will assume knowledge of the first semester courses in real and complex variables, and the basic course in number theory.
Syllabus:
The course is an introductory course in (analytic) number theory. The topics include
1. The Euclidean algorithm, unique factorization, greatest common divisor, linear Diophantine equations, congruences, Chinese Remainder Theorem, Legendre symbol, quadratic reciprocity law, primitive roots and indices
2. Arithmetic functions
3. The order and average order of magnitude of arithmetic functions
4. The Prime Number Theorem and its applications
5. Dirichlet characters, Dirichlet's theorem on primes in arithmetic progressions
6. Primitive characters, character sums, Polya–Vinogradov inequality, and Burgess' bounds
7. Sums of squares
If we still have time, then we may include (In fact, we won't have time. 06.07)
8. Modular forms and theta series
9. Equidistribution modulo one
10. Diophantine approximation, Liouville's theorem on rational approximations to algebraic numbers, Thue's equation
Bibliography
Any introductory book on number theory will be useful. For example, see:
1. W.J. LeVeque, Fundamentals of Number Theory.
2. 潘承洞,《数论基础》.
Suggested reading:
3. T. Apostol, Introduction to Analytic Number Theory.
4. H. Montgomery and R. Vaughan, Multiplicative Number Theory I. Classical Theory.
5. H. Iwaniec and E. Kowalski, Analytic Number Theory.
Attendance of lectures is mandatory!
Homeworks:
This will be an important part of the course. In order to be eligible to take the final exam, at least 50% of the assignments have to be turned in on the week of their due date. 10% of the final grade will be determined from the homework scores, which will be obtained as the average grade of a certain number of assignments.
Homework_1.pdf due Wednesday, March 17, 2021
Homework_2.pdf due Monday, March 29, 2021
Homework_3.pdf due Wednesday, April 14, 2021
Homework_4.pdf due Wednesday, April 28, 2021
Homework_5.pdf due Monday, May 17, 2021
Homework_6.pdf due Monday, May 31, 2021
Lecture notes:
Lecture note 1.pdf 03.01
Lecture note 2.pdf 03.03, 03.08, 03.10
Lecture note 3.pdf 03.10, 03.15, 03.17, 03.22
Lecture note 4.pdf 03.24, 03.29, 03.31, 04.12, 04.14
[Apostol, Sections 3.8 & 5.7-5.9] 04.19
[LeVeque, Chapter 4] 04.21
[Montgomery and Vaughan, Chapter 4] & [Iwaniec and Kowalski, Section 2.3] 04.26, 04.28, 05.08
[Montgomery and Vaughan, Chapter 9] 05.10, 05.12, 05.19, 05.24, 05.26, 05.31, 06.02, 06.07
[LeVeque, Chapter 7] 06.09
Exercise classes: 04.07, 05.17, 06.16
Contact: Bingrong Huang, brhuang@sdu.edu.cn, Office : Mingde Building C701
Teaching assistant: Shenghao Hua, huashenghao@vip.qq.com
Course homepage: https://faculty.sdu.edu.cn/brhuang/zh_CN/zdylm/1322195/list/index.htm
-
代数和几何基础
教材:
[1]. 冯克勤,余红兵,《整数与多项式》,高等教育出版社,施普林格出版社,1999.
[2]. 吴光磊,田畴,《解析几何简明教程 (第2版)》,高等教育出版社,2008,普通高等教育“十一五”国家级规划教材.
参考书:
[1] 潘承洞,《数论基础》,高等教育出版社,2012.
[2] 吕林根,许子道,《解析几何》第五版,高等教育出版社,2019.
Contact: Bingrong Huang, brhuang@sdu.edu.cn, Office : Mingde Building C701
Teaching assistants: Huimin Zhang and Yi Huang
Course homepage: https://faculty.sdu.edu.cn/brhuang/zh_CN/zdylm/1322196/list/index.htm